19,842 research outputs found

    Reactive Turing Machines

    Full text link
    We propose reactive Turing machines (RTMs), extending classical Turing machines with a process-theoretical notion of interaction, and use it to define a notion of executable transition system. We show that every computable transition system with a bounded branching degree is simulated modulo divergence-preserving branching bisimilarity by an RTM, and that every effective transition system is simulated modulo the variant of branching bisimilarity that does not require divergence preservation. We conclude from these results that the parallel composition of (communicating) RTMs can be simulated by a single RTM. We prove that there exist universal RTMs modulo branching bisimilarity, but these essentially employ divergence to be able to simulate an RTM of arbitrary branching degree. We also prove that modulo divergence-preserving branching bisimilarity there are RTMs that are universal up to their own branching degree. Finally, we establish a correspondence between executability and finite definability in a simple process calculus

    On the Executability of Interactive Computation

    Full text link
    The model of interactive Turing machines (ITMs) has been proposed to characterise which stream translations are interactively computable; the model of reactive Turing machines (RTMs) has been proposed to characterise which behaviours are reactively executable. In this article we provide a comparison of the two models. We show, on the one hand, that the behaviour exhibited by ITMs is reactively executable, and, on the other hand, that the stream translations naturally associated with RTMs are interactively computable. We conclude from these results that the theory of reactive executability subsumes the theory of interactive computability. Inspired by the existing model of ITMs with advice, which provides a model of evolving computation, we also consider RTMs with advice and we establish that a facility of advice considerably upgrades the behavioural expressiveness of RTMs: every countable transition system can be simulated by some RTM with advice up to a fine notion of behavioural equivalence.Comment: 15 pages, 0 figure

    From computability to executability : a process-theoretic view on automata theory

    Get PDF
    The theory of automata and formal language was devised in the 1930s to provide models for and to reason about computation. Here we mean by computation a procedure that transforms input into output, which was the sole mode of operation of computers at the time. Nowadays, computers are systems that interact with us and also each other; they are non-deterministic, reactive systems. Concurrency theory, split off from classical automata theory a few decades ago, provides a model of computation similar to the model given by the theory of automata and formal language, but focuses on concurrent, reactive and interactive systems. This thesis investigates the integration of the two theories, exposing the differences and similarities between them. Where automata and formal language theory focuses on computations and languages, concurrency theory focuses on behaviour. To achieve integration, we look for process-theoretic analogies of classic results from automata theory. The most prominent difference is that we use an interpretation of automata as labelled transition systems modulo (divergence-preserving) branching bisimilarity instead of treating automata as language acceptors. We also consider similarities such as grammars as recursive specifications and finite automata as labelled finite transition systems. We investigate whether the classical results still hold and, if not, what extra conditions are sufficient to make them hold. We especially look into three levels of Chomsky's hierarchy: we study the notions of finite-state systems, pushdown systems, and computable systems. Additionally we investigate the notion of parallel pushdown systems. For each class we define the central notion of automaton and its behaviour by associating a transition system with it. Then we introduce a suitable specification language and investigate the correspondence with the respective automaton (via its associated transition system). Because we not only want to study interaction with the environment, but also the interaction within the automaton, we make it explicit by means of communicating parallel components: one component representing the finite control of the automaton and one component representing the memory. First, we study finite-state systems by reinvestigating the relation between finite-state automata, left- and right-linear grammars, and regular expressions, but now up to (divergence-preserving) branching bisimilarity. For pushdown systems we augment the finite-state systems with stack memory to obtain the pushdown automata and consider different termination styles: termination on empty stack, on final state, and on final state and empty stack. Unlike for language equivalence, up to (divergence-preserving) branching bisimilarity the associated transition systems for the different termination styles fall into different classes. We obtain (under some restrictions) the correspondence between context-free grammars and pushdown automata for termination on final state and empty stack. We show how for contrasimulation, a weaker equivalence than branching bisimilarity, we can obtain the correspondence result without some of the restrictions. Finally, we make the interaction within a pushdown automaton explicit, but in a different way depending on the termination style. By analogy of pushdown systems we investigate the parallel pushdown systems, obtained by augmenting finite-state systems with bag memory, and consider analogous termination styles. We investigate the correspondence between context-free grammars that use parallel composition instead of sequential composition and parallel pushdown automata. While the correspondence itself is rather tight, it unfortunately only covers a small subset of the parallel pushdown automata, i.e. the single-state parallel pushdown automata. When making the interaction within parallel pushdown automata explicit, we obtain a rather uniform result for all termination styles. Finally, we study computable systems and the relation with exective and computable transition systems and Turing machines. For this we present the reactive Turing machine, a classical Turing machine augmented with capabilities for interaction. Again, we make the interaction in the reactive Turing machine between its finite control and the tape memory explicit

    An Intensional Concurrent Faithful Encoding of Turing Machines

    Get PDF
    The benchmark for computation is typically given as Turing computability; the ability for a computation to be performed by a Turing Machine. Many languages exploit (indirect) encodings of Turing Machines to demonstrate their ability to support arbitrary computation. However, these encodings are usually by simulating the entire Turing Machine within the language, or by encoding a language that does an encoding or simulation itself. This second category is typical for process calculi that show an encoding of lambda-calculus (often with restrictions) that in turn simulates a Turing Machine. Such approaches lead to indirect encodings of Turing Machines that are complex, unclear, and only weakly equivalent after computation. This paper presents an approach to encoding Turing Machines into intensional process calculi that is faithful, reduction preserving, and structurally equivalent. The encoding is demonstrated in a simple asymmetric concurrent pattern calculus before generalised to simplify infinite terms, and to show encodings into Concurrent Pattern Calculus and Psi Calculi.Comment: In Proceedings ICE 2014, arXiv:1410.701

    Computation Environments, An Interactive Semantics for Turing Machines (which P is not equal to NP considering it)

    Full text link
    To scrutinize notions of computation and time complexity, we introduce and formally define an interactive model for computation that we call it the \emph{computation environment}. A computation environment consists of two main parts: i) a universal processor and ii) a computist who uses the computability power of the universal processor to perform effective procedures. The notion of computation finds it meaning, for the computist, through his \underline{interaction} with the universal processor. We are interested in those computation environments which can be considered as alternative for the real computation environment that the human being is its computist. These computation environments must have two properties: 1- being physically plausible, and 2- being enough powerful. Based on Copeland' criteria for effective procedures, we define what a \emph{physically plausible} computation environment is. We construct two \emph{physically plausible} and \emph{enough powerful} computation environments: 1- the Turing computation environment, denoted by ETE_T, and 2- a persistently evolutionary computation environment, denoted by EeE_e, which persistently evolve in the course of executing the computations. We prove that the equality of complexity classes P\mathrm{P} and NP\mathrm{NP} in the computation environment EeE_e conflicts with the \underline{free will} of the computist. We provide an axiomatic system T\mathcal{T} for Turing computability and prove that ignoring just one of the axiom of T\mathcal{T}, it would not be possible to derive P=NP\mathrm{P=NP} from the rest of axioms. We prove that the computist who lives inside the environment ETE_T, can never be confident that whether he lives in a static environment or a persistently evolutionary one.Comment: 33 pages, interactive computation, P vs N

    Computing with Coloured Tangles

    Full text link
    We suggest a diagrammatic model of computation based on an axiom of distributivity. A diagram of a decorated coloured tangle, similar to those that appear in low dimensional topology, plays the role of a circuit diagram. Equivalent diagrams represent bisimilar computations. We prove that our model of computation is Turing complete, and that with bounded resources it can moreover decide any language in complexity class IP, sometimes with better performance parameters than corresponding classical protocols.Comment: 36 pages,; Introduction entirely rewritten, Section 4.3 adde

    A Hypercomputation in Brouwer's Constructivism

    Full text link
    In contrast to other constructivist schools, for Brouwer, the notion of "constructive object" is not restricted to be presented as `words' in some finite alphabet of symbols, and choice sequences which are non-predetermined and unfinished objects are legitimate constructive objects. In this way, Brouwer's constructivism goes beyond Turing computability. Further, in 1999, the term hypercomputation was introduced by J. Copeland. Hypercomputation refers to models of computation which go beyond Church-Turing thesis. In this paper, we propose a hypercomputation called persistently evolutionary Turing machines based on Brouwer's notion of being constructive.Comment: This paper has been withdrawn by the author due to crucial errors in theorems 4.6 and 5.2 and definition 4.

    Undecidability of the Spectral Gap (full version)

    Full text link
    We show that the spectral gap problem is undecidable. Specifically, we construct families of translationally-invariant, nearest-neighbour Hamiltonians on a 2D square lattice of d-level quantum systems (d constant), for which determining whether the system is gapped or gapless is an undecidable problem. This is true even with the promise that each Hamiltonian is either gapped or gapless in the strongest sense: it is promised to either have continuous spectrum above the ground state in the thermodynamic limit, or its spectral gap is lower-bounded by a constant in the thermodynamic limit. Moreover, this constant can be taken equal to the local interaction strength of the Hamiltonian.Comment: v1: 146 pages, 56 theorems etc., 15 figures. See shorter companion paper arXiv:1502.04135 (same title and authors) for a short version omitting technical details. v2: Small but important fix to wording of abstract. v3: Simplified and shortened some parts of the proof; minor fixes to other parts. Now only 127 pages, 55 theorems etc., 10 figures. v4: Minor updates to introductio
    • …
    corecore