136 research outputs found

    Turing jumps through provability

    Full text link
    Fixing some computably enumerable theory TT, the Friedman-Goldfarb-Harrington (FGH) theorem says that over elementary arithmetic, each Σ1\Sigma_1 formula is equivalent to some formula of the form □Tφ\Box_T \varphi provided that TT is consistent. In this paper we give various generalizations of the FGH theorem. In particular, for n>1n>1 we relate Σn\Sigma_{n} formulas to provability statements [n]TTrueφ[n]_T^{\sf True}\varphi which are a formalization of "provable in TT together with all true Σn+1\Sigma_{n+1} sentences". As a corollary we conclude that each [n]TTrue[n]_T^{\sf True} is Σn+1\Sigma_{n+1}-complete. This observation yields us to consider a recursively defined hierarchy of provability predicates [n+1]T□[n+1]^\Box_T which look a lot like [n+1]TTrue[n+1]_T^{\sf True} except that where [n+1]TTrue[n+1]_T^{\sf True} calls upon the oracle of all true Σn+2\Sigma_{n+2} sentences, the [n+1]T□[n+1]^\Box_T recursively calls upon the oracle of all true sentences of the form ⟨n⟩T□ϕ\langle n \rangle_T^\Box\phi. As such we obtain a `syntax-light' characterization of Σn+1\Sigma_{n+1} definability whence of Turing jumps which is readily extended beyond the finite. Moreover, we observe that the corresponding provability predicates [n+1]T□[n+1]_T^\Box are well behaved in that together they provide a sound interpretation of the polymodal provability logic GLPω{\sf GLP}_\omega

    Turing-Taylor expansions for arithmetic theories

    Full text link
    Turing progressions have been often used to measure the proof-theoretic strength of mathematical theories. Turing progressions based on nn-provability give rise to a Πn+1\Pi_{n+1} proof-theoretic ordinal. As such, to each theory UU we can assign the sequence of corresponding Πn+1\Pi_{n+1} ordinals ⟨∣U∣n⟩n>0\langle |U|_n\rangle_{n>0}. We call this sequence a \emph{Turing-Taylor expansion} of a theory. In this paper, we relate Turing-Taylor expansions of sub-theories of Peano Arithmetic to Ignatiev's universal model for the closed fragment of the polymodal provability logic GLPω{\mathbf{GLP}}_\omega. In particular, in this first draft we observe that each point in the Ignatiev model can be seen as Turing-Taylor expansions of formal mathematical theories. Moreover, each sub-theory of Peano Arithmetic that allows for a Turing-Taylor expression will define a unique point in Ignatiev's model.Comment: First draf

    Levelable Sets and the Algebraic Structure of Parameterizations

    Get PDF
    Asking which sets are fixed-parameter tractable for a given parameterization constitutes much of the current research in parameterized complexity theory. This approach faces some of the core difficulties in complexity theory. By focussing instead on the parameterizations that make a given set fixed-parameter tractable, we circumvent these difficulties. We isolate parameterizations as independent measures of complexity and study their underlying algebraic structure. Thus we are able to compare parameterizations, which establishes a hierarchy of complexity that is much stronger than that present in typical parameterized algorithms races. Among other results, we find that no practically fixed-parameter tractable sets have optimal parameterizations

    Open questions about Ramsey-type statements in reverse mathematics

    Get PDF
    Ramsey's theorem states that for any coloring of the n-element subsets of N with finitely many colors, there is an infinite set H such that all n-element subsets of H have the same color. The strength of consequences of Ramsey's theorem has been extensively studied in reverse mathematics and under various reducibilities, namely, computable reducibility and uniform reducibility. Our understanding of the combinatorics of Ramsey's theorem and its consequences has been greatly improved over the past decades. In this paper, we state some questions which naturally arose during this study. The inability to answer those questions reveals some gaps in our understanding of the combinatorics of Ramsey's theorem.Comment: 15 page

    Restricted Positive Quantification Is Not Elementary

    Get PDF
    We show that a restricted variant of constructive predicate logic with positive (covariant) quantification is of super-elementary complexity. The restriction is to limit the number of eigenvariables used in quantifier introductions rules to a reasonably usable level. This construction suggests that the known non-elementary decision algorithms for positive logic may actually be best possible
    • …
    corecore