66 research outputs found

    Learning algebraic structures with the help of Borel equivalence relations

    Get PDF
    We study algorithmic learning of algebraic structures. In our framework, a learner receives larger and larger pieces of an arbitrary copy of a computable structure and, at each stage, is required to output a conjecture about the isomorphism type of such a structure. The learning is successful if the conjectures eventually stabilize to a correct guess. We prove that a family of structures is learnable if and only if its learning domain is continuously reducible to the relation E0 of eventual agreement on reals. This motivates a novel research program, that is, using descriptive set theoretic tools to calibrate the (learning) complexity of nonlearnable families. Here, we focus on the learning power of well-known benchmark Borel equivalence relations (i.e., E1, E2, E3, Z0, and Eset)

    Computable embeddings for pairs of linear orders

    Full text link
    We study computable embeddings for pairs of structures, i.e. for classes containing precisely two non-isomorphic structures. Surprisingly, even for some pairs of simple linear orders, computable embeddings induce a non-trivial degree structure. Our main result shows that {ω⋅k,ω⋆⋅k}\{\omega \cdot k,\omega^\star \cdot k\} is computably embeddable in {ω⋅t,ω⋆⋅t}\{\omega \cdot t, \omega^\star \cdot t\} iff kk divides tt.Comment: 20 page

    Computability Theory

    Get PDF
    Computability is one of the fundamental notions of mathematics, trying to capture the effective content of mathematics. Starting from Gödel’s Incompleteness Theorem, it has now blossomed into a rich area with strong connections with other areas of mathematical logic as well as algebra and theoretical computer science

    Computability Theory

    Get PDF
    Computability and computable enumerability are two of the fundamental notions of mathematics. Interest in effectiveness is already apparent in the famous Hilbert problems, in particular the second and tenth, and in early 20th century work of Dehn, initiating the study of word problems in group theory. The last decade has seen both completely new subareas develop as well as remarkable growth in two-way interactions between classical computability theory and areas of applications. There is also a great deal of work on algorithmic randomness, reverse mathematics, computable analysis, and in computable structure theory/computable model theory. The goal of this workshop is to bring together researchers representing different aspects of computability theory to discuss recent advances, and to stimulate future work

    Infinite time decidable equivalence relation theory

    Full text link
    We introduce an analog of the theory of Borel equivalence relations in which we study equivalence relations that are decidable by an infinite time Turing machine. The Borel reductions are replaced by the more general class of infinite time computable functions. Many basic aspects of the classical theory remain intact, with the added bonus that it becomes sensible to study some special equivalence relations whose complexity is beyond Borel or even analytic. We also introduce an infinite time generalization of the countable Borel equivalence relations, a key subclass of the Borel equivalence relations, and again show that several key properties carry over to the larger class. Lastly, we collect together several results from the literature regarding Borel reducibility which apply also to absolutely Delta_1^2 reductions, and hence to the infinite time computable reductions.Comment: 30 pages, 3 figure

    Computable Categoricity of Trees of Finite Height

    Get PDF
    We characterize the structure of computably categorical trees of finite height, and prove that our criterion is both necessary and sufficient. Intuitively, the characterization is easiest to express in terms of isomorphisms of (possibly infinite) trees, but in fact it is equivalent to a ÎŁ03-condition. We show that all trees which are not computably categorical have computable dimension ω. Finally, we prove that for every n ≄ 1 in ω, there exists a computable tree of finite height which is ∆0n+1-categorical but not ∆0n-categorical

    Mathematical Logic: Proof theory, Constructive Mathematics

    Get PDF
    The workshop “Mathematical Logic: Proof Theory, Constructive Mathematics” was centered around proof-theoretic aspects of current mathematics, constructive mathematics and logical aspects of computational complexit

    Mathematical Logic: Proof Theory, Constructive Mathematics

    Get PDF
    [no abstract available
    • 

    corecore