2 research outputs found

    Intermittency and Self-Organisation in Turbulence and Statistical Mechanics

    Get PDF
    There is overwhelming evidence, from laboratory experiments, observations, and computational studies, that coherent structures can cause intermittent transport, dramatically enhancing transport. A proper description of this intermittent phenomenon, however, is extremely difficult, requiring a new non-perturbative theory, such as statistical description. Furthermore, multi-scale interactions are responsible for inevitably complex dynamics in strongly non-equilibrium systems, a proper understanding of which remains a main challenge in classical physics. As a remarkable consequence of multi-scale interaction, a quasi-equilibrium state (the so-called self-organisation) can however be maintained. This special issue aims to present different theories of statistical mechanics to understand this challenging multiscale problem in turbulence. The 14 contributions to this Special issue focus on the various aspects of intermittency, coherent structures, self-organisation, bifurcation and nonlocality. Given the ubiquity of turbulence, the contributions cover a broad range of systems covering laboratory fluids (channel flow, the Von Kármán flow), plasmas (magnetic fusion), laser cavity, wind turbine, air flow around a high-speed train, solar wind and industrial application

    Turbulence through the Spyglass of Bilocal Kinetics

    No full text
    In two recent papers we introduced a generalization of Boltzmann’s assumption of molecular chaos based on a criterion of maximum entropy, which allowed setting up a bilocal version of Boltzmann’s kinetic equation. The present paper aims to investigate how the essentially non-local character of turbulent flows can be addressed through this bilocal kinetic description, instead of the more standard approach through the local Euler/Navier–Stokes equation. Balance equations appropriate to this kinetic scheme are derived and closed so as to provide bilocal hydrodynamical equations at the non-viscous order. These equations essentially consist of two copies of the usual local equations, but coupled through a bilocal pressure tensor. Interestingly, our formalism automatically produces a closed transport equation for this coupling term
    corecore