23 research outputs found

    Speculative Approximations for Terascale Analytics

    Full text link
    Model calibration is a major challenge faced by the plethora of statistical analytics packages that are increasingly used in Big Data applications. Identifying the optimal model parameters is a time-consuming process that has to be executed from scratch for every dataset/model combination even by experienced data scientists. We argue that the incapacity to evaluate multiple parameter configurations simultaneously and the lack of support to quickly identify sub-optimal configurations are the principal causes. In this paper, we develop two database-inspired techniques for efficient model calibration. Speculative parameter testing applies advanced parallel multi-query processing methods to evaluate several configurations concurrently. The number of configurations is determined adaptively at runtime, while the configurations themselves are extracted from a distribution that is continuously learned following a Bayesian process. Online aggregation is applied to identify sub-optimal configurations early in the processing by incrementally sampling the training dataset and estimating the objective function corresponding to each configuration. We design concurrent online aggregation estimators and define halting conditions to accurately and timely stop the execution. We apply the proposed techniques to distributed gradient descent optimization -- batch and incremental -- for support vector machines and logistic regression models. We implement the resulting solutions in GLADE PF-OLA -- a state-of-the-art Big Data analytics system -- and evaluate their performance over terascale-size synthetic and real datasets. The results confirm that as many as 32 configurations can be evaluated concurrently almost as fast as one, while sub-optimal configurations are detected accurately in as little as a 1/20th1/20^{\text{th}} fraction of the time

    PF-OLA: A High-Performance Framework for Parallel On-Line Aggregation

    Full text link
    Online aggregation provides estimates to the final result of a computation during the actual processing. The user can stop the computation as soon as the estimate is accurate enough, typically early in the execution. This allows for the interactive data exploration of the largest datasets. In this paper we introduce the first framework for parallel online aggregation in which the estimation virtually does not incur any overhead on top of the actual execution. We define a generic interface to express any estimation model that abstracts completely the execution details. We design a novel estimator specifically targeted at parallel online aggregation. When executed by the framework over a massive 8TB8\text{TB} TPC-H instance, the estimator provides accurate confidence bounds early in the execution even when the cardinality of the final result is seven orders of magnitude smaller than the dataset size and without incurring overhead.Comment: 36 page

    Parallel Online Aggregation in Action

    Get PDF
    ABSTRACT Online aggregation provides continuous estimates to the final result of a computation during the actual processing. The user can stop the computation as soon as the estimate is accurate enough, typically early in the execution, or can let the processing terminate and obtain the exact result. In this demonstration, we introduce a general framework for parallel online aggregation in which estimation does not incur overhead on top of the actual processing. We define a generic interface to express any estimation model that abstracts completely the execution details. We design multiple samplingbased estimators suited for parallel online aggregation and implement them inside the framework. Demonstration participants are shown how estimates to general SQL aggregation queries over terabytes of TPC-H data are generated during the entire processing. Due to parallel execution, the estimate converges to the correct result in a matter of seconds even for the most difficult queries. The behavior of the estimators is evaluated under different operating regimes of the distributed cluster used in the demonstration

    A Data-Analysis and Sensitivity-Optimization Framework for the KATRIN Experiment

    Get PDF
    Presently under construction, the Karlsruhe TRitium Neutrino (KATRIN) experiment is the next generation tritium beta-decay experiment to perform a direct kinematical measurement of the electron neutrino mass with an unprecedented sensitivity of 200 meV (90% C.L.). This thesis describes the implementation of a consistent data analysis framework, addressing technical aspects of the data taking process and statistical challenges of a neutrino mass estimation from the beta-decay electron spectrum

    Knowing when you're wrong: Building fast and reliable approximate query processing systems

    Get PDF
    Modern data analytics applications typically process massive amounts of data on clusters of tens, hundreds, or thousands of machines to support near-real-time decisions.The quantity of data and limitations of disk and memory bandwidth often make it infeasible to deliver answers at interactive speeds. However, it has been widely observed that many applications can tolerate some degree of inaccuracy. This is especially true for exploratory queries on data, where users are satisfied with "close-enough" answers if they can come quickly. A popular technique for speeding up queries at the cost of accuracy is to execute each query on a sample of data, rather than the whole dataset. To ensure that the returned result is not too inaccurate, past work on approximate query processing has used statistical techniques to estimate "error bars" on returned results. However, existing work in the sampling-based approximate query processing (S-AQP) community has not validated whether these techniques actually generate accurate error bars for real query workloads. In fact, we find that error bar estimation often fails on real world production workloads. Fortunately, it is possible to quickly and accurately diagnose the failure of error estimation for a query. In this paper, we show that it is possible to implement a query approximation pipeline that produces approximate answers and reliable error bars at interactive speeds.National Science Foundation (U.S.) (CISE Expeditions Award CCF-1139158)Lawrence Berkeley National Laboratory (Award 7076018)United States. Defense Advanced Research Projects Agency (XData Award FA8750-12-2-0331)Amazon.com (Firm)Google (Firm)SAP CorporationThomas and Stacey Siebel FoundationApple Computer, Inc.Cisco Systems, Inc.Cloudera, Inc.EMC CorporationEricsson, Inc.Facebook (Firm

    BlinkML: Efficient Maximum Likelihood Estimation with Probabilistic Guarantees

    Full text link
    The rising volume of datasets has made training machine learning (ML) models a major computational cost in the enterprise. Given the iterative nature of model and parameter tuning, many analysts use a small sample of their entire data during their initial stage of analysis to make quick decisions (e.g., what features or hyperparameters to use) and use the entire dataset only in later stages (i.e., when they have converged to a specific model). This sampling, however, is performed in an ad-hoc fashion. Most practitioners cannot precisely capture the effect of sampling on the quality of their model, and eventually on their decision-making process during the tuning phase. Moreover, without systematic support for sampling operators, many optimizations and reuse opportunities are lost. In this paper, we introduce BlinkML, a system for fast, quality-guaranteed ML training. BlinkML allows users to make error-computation tradeoffs: instead of training a model on their full data (i.e., full model), BlinkML can quickly train an approximate model with quality guarantees using a sample. The quality guarantees ensure that, with high probability, the approximate model makes the same predictions as the full model. BlinkML currently supports any ML model that relies on maximum likelihood estimation (MLE), which includes Generalized Linear Models (e.g., linear regression, logistic regression, max entropy classifier, Poisson regression) as well as PPCA (Probabilistic Principal Component Analysis). Our experiments show that BlinkML can speed up the training of large-scale ML tasks by 6.26x-629x while guaranteeing the same predictions, with 95% probability, as the full model.Comment: 22 pages, SIGMOD 201

    Database Learning: Toward a Database that Becomes Smarter Every Time

    Full text link
    In today's databases, previous query answers rarely benefit answering future queries. For the first time, to the best of our knowledge, we change this paradigm in an approximate query processing (AQP) context. We make the following observation: the answer to each query reveals some degree of knowledge about the answer to another query because their answers stem from the same underlying distribution that has produced the entire dataset. Exploiting and refining this knowledge should allow us to answer queries more analytically, rather than by reading enormous amounts of raw data. Also, processing more queries should continuously enhance our knowledge of the underlying distribution, and hence lead to increasingly faster response times for future queries. We call this novel idea---learning from past query answers---Database Learning. We exploit the principle of maximum entropy to produce answers, which are in expectation guaranteed to be more accurate than existing sample-based approximations. Empowered by this idea, we build a query engine on top of Spark SQL, called Verdict. We conduct extensive experiments on real-world query traces from a large customer of a major database vendor. Our results demonstrate that Verdict supports 73.7% of these queries, speeding them up by up to 23.0x for the same accuracy level compared to existing AQP systems.Comment: This manuscript is an extended report of the work published in ACM SIGMOD conference 201

    The application of neural networks to anodic stripping voltammetry to improve trace metal analysis

    Get PDF
    This thesis describes a novel application of an artificial neural network and links together the two diverse disciplines of electroanalytical chemistry and information sciences. The artificial neural network is used to process data obtained from a Differential Pulse Anodic Stripping (DPAS) electroanalytical scan and produces as an output, predictions of lead concentration in samples where the concentration is less than 100 parts per billion. A comparative study of several post analysis processing techniques is presented, both traditional and neural. Through this it is demonstrated that by using a neural network, both the accuracy and the precision of the concentration predictions are increased by a factor of approximately two, over those obtained using a traditional, peak height calibration curve method. Statistical justification for these findings is provided Furthermore it is shown that, by post processing with a neural network, good quantitative predictions of heavy metal concentration may be made from instrument responses so poor that, if using tradition methods of calibration, the analytical scan would have had to be repeated. As part of the research the author has designed and built a complete computer controlled analytical instrument which provides output both to a graphical display and to the neural network. This instrument, which is fully described in the text, is operated via a mouse driven user interface written by the author
    corecore