643 research outputs found

    On the Derivation of Optimal Partial Successive Interference Cancellation

    Get PDF
    The necessity of accurate channel estimation for Successive and Parallel Interference Cancellation is well known. Iterative channel estimation and channel decoding (for instance by means of the Expectation-Maximization algorithm) is particularly important for these multiuser detection schemes in the presence of time varying channels, where a high density of pilots is necessary to track the channel. This paper designs a method to analytically derive a weighting factor α\alpha, necessary to improve the efficiency of interference cancellation in the presence of poor channel estimates. Moreover, this weighting factor effectively mitigates the presence of incorrect decisions at the output of the channel decoder. The analysis provides insight into the properties of such interference cancellation scheme and the proposed approach significantly increases the effectiveness of Successive Interference Cancellation under the presence of channel estimation errors, which leads to gains of up to 3 dB.Comment: IEEE GLOBECOM 201

    Low-Complexity Joint Channel Estimation and List Decoding of Short Codes

    Get PDF
    A pilot-assisted transmission (PAT) scheme is proposed for short blocklengths, where the pilots are used only to derive an initial channel estimate for the list construction step. The final decision of the message is obtained by applying a non-coherent decoding metric to the codewords composing the list. This allows one to use very few pilots, thus reducing the channel estimation overhead. The method is applied to an ordered statistics decoder for communication over a Rayleigh block-fading channel. Gains of up to 1.21.2 dB as compared to traditional PAT schemes are demonstrated for short codes with QPSK signaling. The approach can be generalized to other list decoders, e.g., to list decoding of polar codes.Comment: Accepted at the 12th International ITG Conference on Systems, Communications and Coding (SCC 2019), Rostock, German

    Message-Passing Algorithms for Channel Estimation and Decoding Using Approximate Inference

    Get PDF
    We design iterative receiver schemes for a generic wireless communication system by treating channel estimation and information decoding as an inference problem in graphical models. We introduce a recently proposed inference framework that combines belief propagation (BP) and the mean field (MF) approximation and includes these algorithms as special cases. We also show that the expectation propagation and expectation maximization algorithms can be embedded in the BP-MF framework with slight modifications. By applying the considered inference algorithms to our probabilistic model, we derive four different message-passing receiver schemes. Our numerical evaluation demonstrates that the receiver based on the BP-MF framework and its variant based on BP-EM yield the best compromise between performance, computational complexity and numerical stability among all candidate algorithms.Comment: Accepted for publication in the Proceedings of 2012 IEEE International Symposium on Information Theor

    Receiver Architectures for MIMO-OFDM Based on a Combined VMP-SP Algorithm

    Get PDF
    Iterative information processing, either based on heuristics or analytical frameworks, has been shown to be a very powerful tool for the design of efficient, yet feasible, wireless receiver architectures. Within this context, algorithms performing message-passing on a probabilistic graph, such as the sum-product (SP) and variational message passing (VMP) algorithms, have become increasingly popular. In this contribution, we apply a combined VMP-SP message-passing technique to the design of receivers for MIMO-ODFM systems. The message-passing equations of the combined scheme can be obtained from the equations of the stationary points of a constrained region-based free energy approximation. When applied to a MIMO-OFDM probabilistic model, we obtain a generic receiver architecture performing iterative channel weight and noise precision estimation, equalization and data decoding. We show that this generic scheme can be particularized to a variety of different receiver structures, ranging from high-performance iterative structures to low complexity receivers. This allows for a flexible design of the signal processing specially tailored for the requirements of each specific application. The numerical assessment of our solutions, based on Monte Carlo simulations, corroborates the high performance of the proposed algorithms and their superiority to heuristic approaches

    Low-complexity a posteriori probability approximation in EM-based channel estimation for trellis-coded systems

    Get PDF
    When estimating channel parameters in linearly modulated communication systems, the iterative expectation-maximization (EM) algorithm can be used to exploit the signal energy associated with the unknown data symbols. It turns out that the channel estimation requires at each EM iteration the a posteriori probabilities (APPs) of these data symbols, resulting in a high computational complexity when channel coding is present. In this paper, we present a new approximation of the APPs of trellis-coded symbols, which is less complex and requires less memory than alternatives from literature. By means of computer simulations, we show that the Viterbi decoder that uses the EM channel estimate resulting from this APP approximation experiences a negligible degradation in frame error rate (FER) performance, as compared to using the exact APPs in the channel estimation process

    A theoretical framework for soft-information-based synchronization in iterative (Turbo) receivers

    Get PDF
    This contribution considers turbo synchronization, that is to say, the use of soft data information to estimate parameters like carrier phase, frequency, or timing offsets of a modulated signal within an iterative data demodulator. In turbo synchronization, the receiver exploits the soft decisions computed at each turbo decoding iteration to provide a reliable estimate of some signal parameters. The aim of our paper is to show that such “turbo-estimation” approach can be regarded as a special case of the expectation-maximization (EM) algorithm. This leads to a general theoretical framework for turbo synchronization that allows to derive parameter estimation procedures for carrier phase and frequency offset, as well as for timing offset and signal amplitude. The proposed mathematical framework is illustrated by simulation results reported for the particular case of carrier phase and frequency offsets estimation of a turbo-coded 16-QAM signal
    corecore