21 research outputs found

    The Chromatic Structure of Dense Graphs

    Get PDF
    This thesis focusses on extremal graph theory, the study of how local constraints on a graph affect its macroscopic structure. We primarily consider the chromatic structure: whether a graph has or is close to having some (low) chromatic number. Chapter 2 is the slight exception. We consider an induced version of the classical Turán problem. Introduced by Loh, Tait, Timmons, and Zhou, the induced Turán number ex(n, {H, F-ind}) is the greatest number of edges in an n-vertex graph with no copy of H and no induced copy of F. We asymptotically determine ex(n, {H, F-ind}) for H not bipartite and F neither an independent set nor a complete bipartite graph. We also improve the upper bound for ex(n, {H, K_{2, t}-ind}) as well as the lower bound for the clique number of graphs that have some fixed edge density and no induced K_{2, t}. The next three chapters form the heart of the thesis. Chapters 3 and 4 consider the Erdős-Simonovits question for locally r-colourable graphs: what are the structure and chromatic number of graphs with large minimum degree and where every neighbourhood is r-colourable? Chapter 3 deals with the locally bipartite case and Chapter 4 with the general case. While the subject of Chapters 3 and 4 is a natural local to global colouring question, it is also essential for determining the minimum degree stability of H-free graphs, the focus of Chapter 5. Given a graph H of chromatic number r + 1, this asks for the minimum degree that guarantees that an H-free graph is close to r-partite. This is analogous to the classical edge stability of Erdős and Simonovits. We also consider the question for the family of graphs to which H is not homomorphic, showing that it has the same answer. Chapter 6 considers sparse analogues of the results of Chapters 3 to 5 obtaining the thresholds at which the sparse problem degenerates away from the dense one. Finally, Chapter 7 considers a chromatic Ramsey problem first posed by Erdős: what is the greatest chromatic number of a triangle-free graph on nn vertices or with m edges? We improve the best known bounds and obtain tight (up to a constant factor) bounds for the list chromatic number, answering a question of Cames van Batenburg, de Joannis de Verclos, Kang, and Pirot

    Generation of Graph Classes with Efficient Isomorph Rejection

    No full text
    In this thesis, efficient isomorph-free generation of graph classes with the method of generation by canonical construction path(GCCP) is discussed. The method GCCP has been invented by McKay in the 1980s. It is a general method to recursively generate combinatorial objects avoiding isomorphic copies. In the introduction chapter, the method of GCCP is discussed and is compared to other well-known methods of generation. The generation of the class of quartic graphs is used as an example to explain this method. Quartic graphs are simple regular graphs of degree four. The programs, we developed based on GCCP, generate quartic graphs with 18 vertices more than two times as efficiently as the well-known software GENREG does. This thesis also demonstrates how the class of principal graph pairs can be generated exhaustively in an efficient way using the method of GCCP. The definition and importance of principal graph pairs come from the theory of subfactors where each subfactor can be modelled as a principal graph pair. The theory of subfactors has applications in the theory of von Neumann algebras, operator algebras, quantum algebras and Knot theory as well as in design of quantum computers. While it was initially expected that the classification at index 3 + √5 would be very complicated, using GCCP to exhaustively generate principal graph pairs was critical in completing the classification of small index subfactors to index 5¼. The other set of classes of graphs considered in this thesis contains graphs without a given set of cycles. For a given set of graphs, H, the Turán Number of H, ex(n,H), is defined to be the maximum number of edges in a graph on n vertices without a subgraph isomorphic to any graph in H. Denote by EX(n,H), the set of all extremal graphs with respect to n and H, i.e., graphs with n vertices, ex(n,H) edges and no subgraph isomorphic to any graph in H. We consider this problem when H is a set of cycles. New results for ex(n, C) and EX(n, C) are introduced using a set of algorithms based on the method of GCCP. Let K be an arbitrary subset of {C3, C4, C5, . . . , C32}. For given n and a set of cycles, C, these algorithms can be used to calculate ex(n, C) and extremal graphs in Ex(n, C) by recursively extending smaller graphs without any cycle in C where C = K or C = {C3, C5, C7, . . .} ᴜ K and n≤64. These results are considerably in excess of the previous results of the many researchers who worked on similar problems. In the last chapter, a new class of canonical relabellings for graphs, hierarchical canonical labelling, is introduced in which if the vertices of a graph, G, is canonically labelled by {1, . . . , n}, then G\{n} is also canonically labelled. An efficient hierarchical canonical labelling is presented and the application of this labelling in generation of combinatorial objects is discussed

    Gallai-Ramsey numbers for graphs and their generalizations

    Get PDF

    On Generating Prime Numbers Efficiently

    Get PDF
    The prime numbers can be considered as the building blocks of natural numbers, having innumerable applications in number theory and cryptography. There exist multiple different sieving algorithms for the generation of prime numbers. In this thesis, an elementary modular result is utilized to construct an analytically useful generator function and its inverse function. The functions are used to generate a (log)log-linear time complexity prime sieving algorithm which is further optimized to be of linear time complexity. The constructed algorithms and their operation are studied and the linear implementations in JS, Python and C++ are compared to other prime sieves.Alkulukuja voidaan pitää luonnollisten lukujen rakennuspalikoina joilla on lukemattomia sovelluksia lukuteoriassa ja kryptografiassa. Alkulukujen luomiseen on olemassa useita erilaisia seulonta-algoritmeja. Tässä opinnäytetyössä käytetään modulaarista perustulosta analyyttisesti hyödyllisten kehitysfunktion ja sen käänteisfunktion luomiseen. Funktioiden avulla luodaan aikakompleksisuudeltaan (log)log-lineaarinen alkulukuseula, joka optimoidaan lineaariseksi. Rakennettuja algoritmeja ja niiden toimintaa tarkastellaan ja lineaarista implementaatiota JS, Python ja C++ ohjelmointikielillä verrataan toisiin alkulukuseuloihin

    Proceedings of the 17th Cologne-Twente Workshop on Graphs and Combinatorial Optimization

    Get PDF

    Advances in Discrete Applied Mathematics and Graph Theory

    Get PDF
    The present reprint contains twelve papers published in the Special Issue “Advances in Discrete Applied Mathematics and Graph Theory, 2021” of the MDPI Mathematics journal, which cover a wide range of topics connected to the theory and applications of Graph Theory and Discrete Applied Mathematics. The focus of the majority of papers is on recent advances in graph theory and applications in chemical graph theory. In particular, the topics studied include bipartite and multipartite Ramsey numbers, graph coloring and chromatic numbers, several varieties of domination (Double Roman, Quasi-Total Roman, Total 3-Roman) and two graph indices of interest in chemical graph theory (Sombor index, generalized ABC index), as well as hyperspaces of graphs and local inclusive distance vertex irregular graphs

    Subject Index Volumes 1–200

    Get PDF
    corecore