260 research outputs found

    A result on polynomials derived via graph theory

    Full text link
    We present an example of a result in graph theory that is used to obtain a result in another branch of mathematics. More precisely, we show that the isomorphism of certain directed graphs implies that some trinomials over finite fields have the same number of roots

    Merging the A- and Q-spectral theories

    Full text link
    Let GG be a graph with adjacency matrix A(G)A\left( G\right) , and let D(G)D\left( G\right) be the diagonal matrix of the degrees of G.G. The signless Laplacian Q(G)Q\left( G\right) of GG is defined as Q(G):=A(G)+D(G)Q\left( G\right) :=A\left( G\right) +D\left( G\right) . Cvetkovi\'{c} called the study of the adjacency matrix the AA% \textit{-spectral theory}, and the study of the signless Laplacian--the QQ\textit{-spectral theory}. During the years many similarities and differences between these two theories have been established. To track the gradual change of A(G)A\left( G\right) into Q(G)Q\left( G\right) in this paper it is suggested to study the convex linear combinations Aα(G)A_{\alpha }\left( G\right) of A(G)A\left( G\right) and D(G)D\left( G\right) defined by Aα(G):=αD(G)+(1−α)A(G),   0≤α≤1. A_{\alpha}\left( G\right) :=\alpha D\left( G\right) +\left( 1-\alpha\right) A\left( G\right) \text{, \ \ }0\leq\alpha\leq1. This study sheds new light on A(G)A\left( G\right) and Q(G)Q\left( G\right) , and yields some surprises, in particular, a novel spectral Tur\'{a}n theorem. A number of challenging open problems are discussed.Comment: 26 page

    Upper bound theorem for odd-dimensional flag triangulations of manifolds

    Full text link
    We prove that among all flag triangulations of manifolds of odd dimension 2r-1 with sufficiently many vertices the unique maximizer of the entries of the f-, h-, g- and gamma-vector is the balanced join of r cycles. Our proof uses methods from extremal graph theory.Comment: Clarifications and new references, title has change

    Phase transitions in the Ramsey-Turán theory

    Get PDF
    Let f(n) be a function and L be a graph. Denote by RT(n, L, f(n)) the maximum number of edges of an L-free graph on n vertices with independence number less than f(n). Erdos and Sós asked if RT (n, K5, c√ n) = o (n2) for some constant c. We answer this question by proving the stronger RT(n, K5, o (√n log n)) = o(n2). It is known that RT (n, K5, c√n log n )= n2/4 + o (n2) for c > 1, so one can say that K5 has a Ramsey-Turán-phase transition at c√n log n. We extend this result to several other Kp's and functions f(n), determining many more phase transitions. We shall formulate several open problems, in particular, whether variants of the Bollobás-Erdos graph, which is a geometric construction, exist to give good lower bounds on RT (n, Kp, f(n)) for various pairs of p and f(n). These problems are studied in depth by Balogh-HuSimonovits, where among others, the Szemerédi's Regularity Lemma and the Hypergraph Dependent Random Choice Lemma are used.National Science Foundatio

    The codegree threshold of K4−K_4^-

    Get PDF
    The codegree threshold ex2(n,F)\mathrm{ex}_2(n, F) of a 33-graph FF is the minimum d=d(n)d=d(n) such that every 33-graph on nn vertices in which every pair of vertices is contained in at least d+1d+1 edges contains a copy of FF as a subgraph. We study ex2(n,F)\mathrm{ex}_2(n, F) when F=K4−F=K_4^-, the 33-graph on 44 vertices with 33 edges. Using flag algebra techniques, we prove that if nn is sufficiently large then ex2(n,K4−)≤(n+1)/4\mathrm{ex}_2(n, K_4^-)\leq (n+1)/4. This settles in the affirmative a conjecture of Nagle from 1999. In addition, we obtain a stability result: for every near-extremal configuration GG, there is a quasirandom tournament TT on the same vertex set such that GG is close in the edit distance to the 33-graph C(T)C(T) whose edges are the cyclically oriented triangles from TT. For infinitely many values of nn, we are further able to determine ex2(n,K4−)\mathrm{ex}_2(n, K_4^-) exactly and to show that tournament-based constructions C(T)C(T) are extremal for those values of nn.Comment: 31 pages, 7 figures. Ancillary files to the submission contain the information needed to verify the flag algebra computation in Lemma 2.8. Expands on the 2017 conference paper of the same name by the same authors (Electronic Notes in Discrete Mathematics, Volume 61, pages 407-413
    • …
    corecore