62 research outputs found

    Turán Number of an Induced Complete Bipartite Graph Plus an Odd Cycle

    Get PDF
    Let k ⩾ 2 be an integer. We show that if s = 2 and t ⩾ 2, or s = t = 3, then the maximum possible number of edges in a C2k+1-free graph containing no induced copy of Ks,t is asymptotically equal to (t − s + 1)1/s(n/2)2−1/s except when k = s = t = 2. This strengthens a result of Allen, Keevash, Sudakov and Verstraëte [1], and answers a question of Loh, Tait, Timmons and Zhou [14]. Copyright © Cambridge University Press 201

    The Turán Density of Tight Cycles in Three-Uniform Hypergraphs

    Get PDF
    The Turán density of an rr-uniform hypergraph H{\mathcal {H}}, denoted π(H)\pi ({\mathcal {H}}), is the limit of the maximum density of an nn-vertex rr-uniform hypergraph not containing a copy of H{\mathcal {H}}, as nn \to \infty . Denote by C{\mathcal {C}}_{\ell } the 33-uniform tight cycle on \ell vertices. Mubayi and Rödl gave an “iterated blow-up” construction showing that the Turán density of C5{\mathcal {C}}_{5} is at least 2330.4642\sqrt {3} - 3 \approx 0.464, and this bound is conjectured to be tight. Their construction also does not contain C{\mathcal {C}}_{\ell } for larger \ell not divisible by 33, which suggests that it might be the extremal construction for these hypergraphs as well. Here, we determine the Turán density of C{\mathcal {C}}_{\ell } for all large \ell not divisible by 33, showing that indeed π(C)=233\pi ({\mathcal {C}}_{\ell }) = 2\sqrt {3} - 3. To our knowledge, this is the first example of a Turán density being determined where the extremal construction is an iterated blow-up construction. A key component in our proof, which may be of independent interest, is a 33-uniform analogue of the statement “a graph is bipartite if and only if it does not contain an odd cycle”

    On the structure of graphs with forbidden induced substructures

    Get PDF
    One of the central goals in extremal combinatorics is to understand how the global structure of a combinatorial object, e.g. a graph, hypergraph or set system, is affected by local constraints. In this thesis we are concerned with structural properties of graphs and hypergraphs which locally do not look like some type of forbidden induced pattern. Patterns can be single subgraphs, families of subgraphs, or in the multicolour version colourings or families of colourings of subgraphs. Erdős and Szekeres\u27s quantitative version of Ramsey\u27s theorem asserts that in every 22-edge-colouring of the complete graph on nn vertices there is a monochromatic clique on at least 12logn\frac{1}{2}\log n vertices. The famous Erdős-Hajnal conjecture asserts that forbidding fixed colourings on subgraphs ensures much larger monochromatic cliques. The conjecture is open in general, though a few partial results are known. The first part of this thesis will be concerned with different variants of this conjecture: A bipartite variant, a multicolour variant, and an order-size variant for hypergraphs. In the second part of this thesis we focus more on order-size pairs; an order-size pair (n,e)(n,e) is the family consisting of all graphs of order nn and size ee, i.e. on nn vertices with ee edges. We consider order-size pairs in different settings: The graph setting, the bipartite setting and the hypergraph setting. In all these settings we investigate the existence of absolutely avoidable pairs, i.e. fixed pairs that are avoided by all order-size pairs with sufficiently large order, and also forcing densities of order-size pairs (m,f)(m,f), i.e. for nn approaching infinity, the limit superior of the fraction of all possible sizes ee, such that the order-size pair (n,e)(n,e) does not avoid the pair (m,f)(m,f)

    Properly colored and rainbow cycles in edge-colored graphs

    Get PDF

    On Ramsey Theory and Slow Bootstrap Percolation

    Get PDF
    This dissertation concerns two sets of problems in extremal combinatorics. The major part, Chapters 1 to 4, is about Ramsey-type problems for cycles. The shorter second part, Chapter 5, is about a problem in bootstrap percolation. Next, we describe each topic more precisely. Given three graphs G, L1 and L2, we say that G arrows (L1, L2) and write G → (L1, L2), if for every edge-coloring of G by two colors, say 1 and 2, there exists a color i whose color class contains Li as a subgraph. The classical problem in Ramsey theory is the case where G, L1 and L2 are complete graphs; in this case the question is how large the order of G must be (in terms of the orders of L1 andL2) to guarantee that G → (L1, L2). Recently there has been much interest in the case where L1 and L2 are cycles and G is a graph whose minimum degree is large. In the past decade, numerous results have been proved about those problems. We will continue this work and prove two conjectures that have been left open. Our main weapon is Szemeredi\u27s Regularity Lemma.Our second topic is about a rather unusual aspect of the fast expanding theory of bootstrap percolation. Bootstrap percolation on a graph G with parameter r is a cellular automaton modeling the spread of an infection: starting with a set A0, cointained in V(G), of initially infected vertices, define a nested sequence of sets, A0 ⊆ A1 ⊆. . . ⊆ V(G), by the update rule that At+1, the set of vertices infected at time t + 1, is obtained from At by adding to it all vertices with at least r neighbors in At. The initial set A0 percolates if At = V(G) for some t. The minimal such t is the time it takes for A0 to percolate. We prove results about the maximum percolation time on the two-dimensional grid with parameter r = 2

    Essentially tight bounds for rainbow cycles in proper edge-colourings

    Full text link
    An edge-coloured graph is said to be rainbow if no colour appears more than once. Extremal problems involving rainbow objects have been a focus of much research over the last decade as they capture the essence of a number of interesting problems in a variety of areas. A particularly intensively studied question due to Keevash, Mubayi, Sudakov and Verstra\"ete from 2007 asks for the maximum possible average degree of a properly edge-coloured graph on nn vertices without a rainbow cycle. Improving upon a series of earlier bounds, Tomon proved an upper bound of (logn)2+o(1)(\log n)^{2+o(1)} for this question. Very recently, Janzer-Sudakov and Kim-Lee-Liu-Tran independently removed the o(1)o(1) term in Tomon's bound, showing a bound of O(log2n)O(\log^2 n). We prove an upper bound of (logn)1+o(1)(\log n)^{1+o(1)} for this maximum possible average degree when there is no rainbow cycle. Our result is tight up to the o(1)o(1) term, and so it essentially resolves this question. In addition, we observe a connection between this problem and several questions in additive number theory, allowing us to extend existing results on these questions for abelian groups to the case of non-abelian groups

    Generation of Graph Classes with Efficient Isomorph Rejection

    No full text
    In this thesis, efficient isomorph-free generation of graph classes with the method of generation by canonical construction path(GCCP) is discussed. The method GCCP has been invented by McKay in the 1980s. It is a general method to recursively generate combinatorial objects avoiding isomorphic copies. In the introduction chapter, the method of GCCP is discussed and is compared to other well-known methods of generation. The generation of the class of quartic graphs is used as an example to explain this method. Quartic graphs are simple regular graphs of degree four. The programs, we developed based on GCCP, generate quartic graphs with 18 vertices more than two times as efficiently as the well-known software GENREG does. This thesis also demonstrates how the class of principal graph pairs can be generated exhaustively in an efficient way using the method of GCCP. The definition and importance of principal graph pairs come from the theory of subfactors where each subfactor can be modelled as a principal graph pair. The theory of subfactors has applications in the theory of von Neumann algebras, operator algebras, quantum algebras and Knot theory as well as in design of quantum computers. While it was initially expected that the classification at index 3 + √5 would be very complicated, using GCCP to exhaustively generate principal graph pairs was critical in completing the classification of small index subfactors to index 5¼. The other set of classes of graphs considered in this thesis contains graphs without a given set of cycles. For a given set of graphs, H, the Turán Number of H, ex(n,H), is defined to be the maximum number of edges in a graph on n vertices without a subgraph isomorphic to any graph in H. Denote by EX(n,H), the set of all extremal graphs with respect to n and H, i.e., graphs with n vertices, ex(n,H) edges and no subgraph isomorphic to any graph in H. We consider this problem when H is a set of cycles. New results for ex(n, C) and EX(n, C) are introduced using a set of algorithms based on the method of GCCP. Let K be an arbitrary subset of {C3, C4, C5, . . . , C32}. For given n and a set of cycles, C, these algorithms can be used to calculate ex(n, C) and extremal graphs in Ex(n, C) by recursively extending smaller graphs without any cycle in C where C = K or C = {C3, C5, C7, . . .} ᴜ K and n≤64. These results are considerably in excess of the previous results of the many researchers who worked on similar problems. In the last chapter, a new class of canonical relabellings for graphs, hierarchical canonical labelling, is introduced in which if the vertices of a graph, G, is canonically labelled by {1, . . . , n}, then G\{n} is also canonically labelled. An efficient hierarchical canonical labelling is presented and the application of this labelling in generation of combinatorial objects is discussed
    corecore