12 research outputs found

    Extremal problems on counting combinatorial structures

    Get PDF
    The fast developing field of extremal combinatorics provides a diverse spectrum of powerful tools with many applications to economics, computer science, and optimization theory. In this thesis, we focus on counting and coloring problems in this field. The complete balanced bipartite graph on nn vertices has \floor{n^2/4} edges. Since all of its subgraphs are triangle-free, the number of (labeled) triangle-free graphs on nn vertices is at least 2^{\floor{n^2/4}}. This was shown to be the correct order of magnitude in a celebrated paper Erd\H{o}s, Kleitman, and Rothschild from 1976, where the authors furthermore proved that almost all triangle-free graphs are bipartite. In Chapters 2 and 3 we study analogous problems for triangle-free graphs that are maximal with respect to inclusion. In Chapter 2, we solve the following problem of Paul Erd\H{o}s: Determine or estimate the number of maximal triangle-free graphs on nn vertices. We show that the number of maximal triangle-free graphs is at most 2n2/8+o(n2)2^{n^2/8+o(n^2)}, which matches the previously known lower bound. Our proof uses among other tools the Ruzsa-Szemer\'{e}di Triangle Removal Lemma and recent results on characterizing of the structure of independent sets in hypergraphs. This is a joint work with J\'{o}zsef Balogh. In Chapter 3, we investigate the structure of maximal triangle-free graphs. We prove that almost all maximal triangle-free graphs admit a vertex partition (X,Y)(X, Y) such that G[X]G[X] is a perfect matching and YY is an independent set. Our proof uses the Ruzsa-Szemer\'{e}di Removal Lemma, the Erd\H{o}s-Simonovits stability theorem, and recent results of Balogh-Morris-Samotij and Saxton-Thomason on the characterization of the structure of independent sets in hypergraphs. The proof also relies on a new bound on the number of maximal independent sets in triangle-free graphs with many vertex-disjoint P3P_3's, which is of independent interest. This is a joint work with J\'{o}zsef Balogh, Hong Liu, and Maryam Sharifzadeh. In Chapte 4, we seek families in posets with the smallest number of comparable pairs. Given a poset PP, a family \F\subseteq P is \emph{centered} if it is obtained by `taking sets as close to the middle layer as possible'. A poset PP is said to have the \emph{centeredness property} if for any MM, among all families of size MM in PP, centered families contain the minimum number of comparable pairs. Kleitman showed that the Boolean lattice {0,1}n\{0,1\}^n has the centeredness property. It was conjectured by Noel, Scott, and Sudakov, and by Balogh and Wagner, that the poset {0,1,,k}n\{0,1,\ldots,k\}^n also has the centeredness property, provided nn is sufficiently large compared to kk. We show that this conjecture is false for all k2k\geq 2 and investigate the range of MM for which it holds. Further, we improve a result of Noel, Scott, and Sudakov by showing that the poset of subspaces of Fqn\mathbb{F}_q^n has the centeredness property. Several open problems are also given. This is a joint result with J\'{o}zsef Balogh and Adam Zsolt Wagner. In Chapter 5, we consider a graph coloring problem. Kim and Park have found an infinite family of graphs whose squares are not chromatic-choosable. Xuding Zhu asked whether there is some kk such that all kk-th power graphs are chromatic-choosable. We answer this question in the negative: we show that there is a positive constant cc such that for any kk there is a family of graphs GG with χ(Gk)\chi(G^k) unbounded and χ(Gk)cχ(Gk)logχ(Gk)\chi_{\ell}(G^k)\geq c \chi(G^k) \log \chi(G^k). We also provide an upper bound, χ(Gk)1\chi_{\ell}(G^k)1. This is a joint work with Nicholas Kosar, Benjamin Reiniger, and Elyse Yeager

    The Chromatic Structure of Dense Graphs

    Get PDF
    This thesis focusses on extremal graph theory, the study of how local constraints on a graph affect its macroscopic structure. We primarily consider the chromatic structure: whether a graph has or is close to having some (low) chromatic number. Chapter 2 is the slight exception. We consider an induced version of the classical Turán problem. Introduced by Loh, Tait, Timmons, and Zhou, the induced Turán number ex(n, {H, F-ind}) is the greatest number of edges in an n-vertex graph with no copy of H and no induced copy of F. We asymptotically determine ex(n, {H, F-ind}) for H not bipartite and F neither an independent set nor a complete bipartite graph. We also improve the upper bound for ex(n, {H, K_{2, t}-ind}) as well as the lower bound for the clique number of graphs that have some fixed edge density and no induced K_{2, t}. The next three chapters form the heart of the thesis. Chapters 3 and 4 consider the Erdős-Simonovits question for locally r-colourable graphs: what are the structure and chromatic number of graphs with large minimum degree and where every neighbourhood is r-colourable? Chapter 3 deals with the locally bipartite case and Chapter 4 with the general case. While the subject of Chapters 3 and 4 is a natural local to global colouring question, it is also essential for determining the minimum degree stability of H-free graphs, the focus of Chapter 5. Given a graph H of chromatic number r + 1, this asks for the minimum degree that guarantees that an H-free graph is close to r-partite. This is analogous to the classical edge stability of Erdős and Simonovits. We also consider the question for the family of graphs to which H is not homomorphic, showing that it has the same answer. Chapter 6 considers sparse analogues of the results of Chapters 3 to 5 obtaining the thresholds at which the sparse problem degenerates away from the dense one. Finally, Chapter 7 considers a chromatic Ramsey problem first posed by Erdős: what is the greatest chromatic number of a triangle-free graph on nn vertices or with m edges? We improve the best known bounds and obtain tight (up to a constant factor) bounds for the list chromatic number, answering a question of Cames van Batenburg, de Joannis de Verclos, Kang, and Pirot

    Probabilistic and extremal studies in additive combinatorics

    Get PDF
    The results in this thesis concern extremal and probabilistic topics in number theoretic settings. We prove sufficient conditions on when certain types of integer solutions to linear systems of equations in binomial random sets are distributed normally, results on the typical approximate structure of pairs of integer subsets with a given sumset cardinality, as well as upper bounds on how large a family of integer sets defining pairwise distinct sumsets can be. In order to prove the typical structural result on pairs of integer sets, we also establish a new multipartite version of the method of hypergraph containers, generalizing earlier work by Morris, Saxton and Samotij.L'objectiu de la combinatòria additiva “històricament també anomenada teoria combinatòria de nombres” és la d’estudiar l'estructura additiva de conjunts en determinats grups ambient. La combinatòria extremal estudia quant de gran pot ser una col·lecció d'objectes finits abans d'exhibir determinats requisits estructurals. La combinatòria probabilística analitza estructures combinatòries aleatòries, identificant en particular l'estructura dels objectes combinatoris típics. Entre els estudis més celebrats hi ha el treball de grafs aleatoris iniciat per Erdös i Rényi. Un exemple especialment rellevant de com aquestes tres àrees s'entrellacen és el desenvolupament per Erdös del mètode probabilístic en teoria de nombres i en combinatòria, que mostra l'existència de moltes estructures extremes en configuracions additives utilitzant tècniques probabilistes. Tots els temes d'aquesta tesi es troben en la intersecció d'aquestes tres àrees, i apareixen en els problemes següents. Solucions enteres de sistemes d'equacions lineals. Els darrers anys s'han obtingut resultats pel que fa a l’existència de llindars per a determinades solucions enteres a un sistema arbitrari d'equacions lineals donat, responent a la pregunta de quan s'espera que el subconjunt aleatori binomial d'un conjunt inicial de nombres enters contingui solucions gairebé sempre. La següent pregunta lògica és la següent. Suposem que estem en la zona en que hi haurà solucions enteres en el conjunt aleatori binomial, com es distribueixen aleshores aquestes solucions? Al capítol 1, avançarem per respondre aquesta pregunta proporcionant condicions suficients per a quan una gran varietat de solucions segueixen una distribució normal. També parlarem de com, en determinats casos, aquestes condicions suficients també són necessàries. Conjunts amb suma acotada. Què es pot dir de l'estructura de dos conjunts finits en un grup abelià si la seva suma de Minkowski no és molt més gran que la dels conjunts? Un resultat clàssic de Kneser diu que això pot passar si i només si la suma de Minkowski és periòdica respecte a un subgrup propi. En el capítol 3 establirem dos tipus de resultats. En primer lloc, establirem les anomenades versions robustes dels teoremes clàssics de Kneser i Freiman. Robust aquí es refereix al fet que en comptes de demanar informació estructural sobre els conjunts constituents amb el coneixement que la seva suma és petita, només necessitem que això sigui vàlid per a un subconjunt gran passa si només volem donar una informació estructural per a gairebé tots els parells de conjunts amb una suma d'una mida determinada? Donem un teorema d'estructura aproximat que s'aplica a gairebé la majoria dels rangs possibles per la mida dels conjunts suma. Sistemes de conjunts de Sidon. Les preguntes clàssiques sobre els conjunts de Sidon són determinar la seva mida màxima o saber quan un conjunt aleatori és un conjunt de Sidon. Al capítol 4 generalitzem la noció de conjunts de Sidon per establir sistemes i establim els límits corresponents per a aquestes dues preguntes. També demostrem un resultat de densitat relativa, resultat condicionat a una conjectura sobre l'estructura específica dels sistemes màxims de Sidon. Conjunts independents en hipergrafs. El mètode dels contenidors d'hipergrafs és una eina general que es pot utilitzar per obtenir resultats sobre el nombre i l'estructura de conjunts independents en els hipergrafs. La connexió amb la combinatòria additiva apareix perquè molts problemes additius es poden codificar com l'estudi de conjunts independents en hipergrafs.Postprint (published version

    Embedding problems in graphs and hypergraphs

    Get PDF
    In this thesis, we explore several mathematical questions about substructures in graphs and hypergraphs, focusing on algorithmic methods and notions of regularity for graphs and hypergraphs. We investigate conditions for a graph to contain powers of paths and cycles of arbitrary specified linear lengths. Using the well-established graph regularity method, we determine precise minimum degree thresholds for sufficiently large graphs and show that the extremal behaviour is governed by a family of explicitly given extremal graphs. This extends an analogous result of Allen, Böttcher and Hladký for squares of paths and cycles of arbitrary specified linear lengths and confirms a conjecture of theirs. Given positive integers k and j with j < k, we study the length of the longest j-tight path in the binomial random k-uniform hypergraph Hk(n, p). We show that this length undergoes a phase transition from logarithmic to linear and determine the critical threshold for this phase transition. We also prove upper and lower bounds on the length in the subcritical and supercritical ranges. In particular, for the supercritical case we introduce the Pathfinder algorithm, a depth-first search algorithm which discovers j-tight paths in a k-uniform hypergraph. We prove that, in the supercritical case, with high probability this algorithm finds a long j-tight path. Finally, we investigate the embedding of bounded degree hypergraphs into large sparse hypergraphs. The blow-up lemma is a powerful tool for embedding bounded degree spanning subgraphs with wide-ranging applications in extremal graph theory. We prove a sparse hypergraph analogue of the blow-up lemma, showing that large sparse partite complexes with sufficiently regular small subcomplex counts and no atypical vertices behave as if they were complete for the purpose of embedding complexes with bounded degree and bounded partite structure

    LIPIcs, Volume 244, ESA 2022, Complete Volume

    Get PDF
    LIPIcs, Volume 244, ESA 2022, Complete Volum
    corecore