54 research outputs found

    Satellite-based internet: A tutorial

    Get PDF
    In a satellite-based Internet system, satellites are used to interconnect heterogeneous network segments and to provide ubiquitous direct Internet access to homes and businesses. This article presents satellite-based Internet architectures and discusses multiple access control, routing, satellite transport, and integrating satellite networks into the global Internet.published_or_final_versio

    Satellite-based internet: A tutorial

    Get PDF
    In a satellite-based Internet system, satellites are used to interconnect heterogeneous network segments and to provide ubiquitous direct Internet access to homes and businesses. This article presents satellite-based Internet architectures and discusses multiple access control, routing, satellite transport, and integrating satellite networks into the global Internet.published_or_final_versio

    Integrating LEO Satellite Constellations into Internet Backbone

    Get PDF
    Low Earth Orbit (LEO) satellite constellations have been used for ubiquitous and flexible Internet access services. However, a number of problems related to the integration of terrestrial with satellite hosts should be resolved for the effective exploitation of LEO constellations. LEO constellations are different from terrestrial Internet because of its special properties, which result in a lot of problems. A key issue is how to route Internet packets to the LEO constellation. In the thesis (1) the background of LEO constellations was introduced; (2) the obstacles of routing between the satellites and Internet were outlined; (3) The particular problem, which must be solved, is the routing burst stream traffic in LEO satellite constellations. Two novel routing algorithmsCControl Route Transmission (CRT) and CRT with bandwidth allocation (BCRT)Cwere utilized to address the bursts routing problem. CRT is an adaptive protocol which is able to minimize the congestion in the constellations. BCRT is a CRT extension which is allowed to class the traffic (e.g. video) with different QoS requirements and guarantees. Both of CRT and BCRT work in time epochs. Routes are computed on the basis of a directed weighted graph representing the global traffic traveling in the constellations. Both CRT and BCRT were evaluated via simulation and compared with other proposals in the literatures. The results showed that CRT is a simple algorithm, but the strategy produced by CRT could avoid the congestion and enhance the global resource usage in different traffic conditions. Moreover, the explicit reservation and reroute of BCRT greatly improve the performance of CRT. In particular, the dropping rate of BCRT is very low and the average delivery time is comparable with other proposals in the literatures.Low Earth Orbit (LEO) satellite constellations have been used for ubiquitous and flexible Internet access services. However, a number of problems related to the integration of terrestrial with satellite hosts should be resolved for the effective exploitation of LEO constellations. LEO constellations are different from terrestrial Internet because of its special properties, which result in a lot of problems. A key issue is how to route Internet packets to the LEO constellation. In the thesis (1) the background of LEO constellations was introduced; (2) the obstacles of routing between the satellites and Internet were outlined; (3) The particular problem, which must be solved, is the routing burst stream traffic in LEO satellite constellations. Two novel routing algorithmsCControl Route Transmission (CRT) and CRT with bandwidth allocation (BCRT)Cwere utilized to address the bursts routing problem. CRT is an adaptive protocol which is able to minimize the congestion in the constellations. BCRT is a CRT extension which is allowed to class the traffic (e.g. video) with different QoS requirements and guarantees. Both of CRT and BCRT work in time epochs. Routes are computed on the basis of a directed weighted graph representing the global traffic traveling in the constellations. Both CRT and BCRT were evaluated via simulation and compared with other proposals in the literatures. The results showed that CRT is a simple algorithm, but the strategy produced by CRT could avoid the congestion and enhance the global resource usage in different traffic conditions. Moreover, the explicit reservation and reroute of BCRT greatly improve the performance of CRT. In particular, the dropping rate of BCRT is very low and the average delivery time is comparable with other proposals in the literatures

    QoS Provisioning in Converged Satellite and Terrestrial Networks: A Survey of the State-of-the-Art

    Get PDF
    It has been widely acknowledged that future networks will need to provide significantly more capacity than current ones in order to deal with the increasing traffic demands of the users. Particularly in regions where optical fibers are unlikely to be deployed due to economical constraints, this is a major challenge. One option to address this issue is to complement existing narrow-band terrestrial networks with additional satellite connections. Satellites cover huge areas, and recent developments have considerably increased the available capacity while decreasing the cost. However, geostationary satellite links have significantly different link characteristics than most terrestrial links, mainly due to the higher signal propagation time, which often renders them not suitable for delay intolerant traffic. This paper surveys the current state-of-the-art of satellite and terrestrial network convergence. We mainly focus on scenarios in which satellite networks complement existing terrestrial infrastructures, i.e., parallel satellite and terrestrial links exist, in order to provide high bandwidth connections while ideally achieving a similar end user quality-of-experience as in high bandwidth terrestrial networks. Thus, we identify the technical challenges associated with the convergence of satellite and terrestrial networks and analyze the related work. Based on this, we identify four key functional building blocks, which are essential to distribute traffic optimally between the terrestrial and the satellite networks. These are the traffic requirement identification function, the link characteristics identification function, as well as the traffic engineering function and the execution function. Afterwards, we survey current network architectures with respect to these key functional building blocks and perform a gap analysis, which shows that all analyzed network architectures require adaptations to effectively support converged satellite and terrestrial networks. Hence, we conclude by formulating several open research questions with respect to satellite and terrestrial network convergence.This work was supported by the BATS Research Project through the European Union Seventh Framework Programme under Contract 317533

    Satellite integration in 5G : contribution on network architectures and traffic engineering solutions for hybrid satellite-terrestrial mobile backhauling

    Get PDF
    The recent technological advances in the satellite domain such as the use of High Throughput Satellites (HTS) with throughput rates that are magnitudes higher than with previous ones, or the use of large non- Geostationary Earth Orbit (GEO) satellites constellations, etc, are reducing the price per bit and enhancing the Quality of Service (QoS) metrics such as latency, etc., changing the way that the capacity is being brought to the market and making it more attractive for other services such as satellite broadband communications. These new capabilities coupled with the advantages offered by satellite communications such as the unique wide-scale geographical coverage, inherent broadcast/multicast capabilities and highly reliable connectivity, anticipate new opportunities for the integration of the satellite component into the 5G ecosystem. One of the most compelling scenarios is mobile backhauling, where satellite capacity can be used to complement the terrestrial backhauling infrastructure, not only in hard to reach areas, but also for more efficient traffic delivery to Radio Access Network (RAN) nodes, increased resiliency and better support for fast, temporary cell deployments and moving cells. In this context, this thesis work focuses on achieving better satellite-terrestrial backhaul network integration through the development of Traffic Engineering (TE) strategies to manage in a better way the dynamically steerable satellite provisioned capacity. To do this, this thesis work first takes the steps in the definition of an architectural framework that enables a better satellite-terrestrial mobile backhaul network integration, managing the satellite capacity as a constituent part of a Software Defined Networking (SDN) -based TE for mobile backhaul network. Under this basis, this thesis work first proposes and assesses a model for the analysis of capacity and traffic management strategies for hybrid satellite-terrestrial mobile backhauling networks that rely on SDN for fine-grained traffic steering. The performance analysis is carried out in terms of capacity gains that can be achieved when the satellite backhaul capacity is used for traffic overflow, taking into account the placement of the satellite capacity at different traffic aggregation levels and considering a spatial correlation of the traffic demand. Later, the thesis work presents the development of SDN-based TE strategies and algorithms that exploits the dynamically steerable satellite capacity provisioned for resilience purposes to better utilize the satellite capacity by maximizing the network utility under both failure and non-failure conditions in some terrestrial links, under the consideration of elastic, inelastic and unicast and multicast traffic. The performance analysis is carried out in terms of global network utility, fairness and connexion rejection rates compared to non SDN-based TE applications. Finally, sustained in the defined architectural framework designs, the thesis work presents an experimental Proof of Concept (PoC) and validation of a satellite-terrestrial backhaul links integration solution that builts upon SDN technologies for the realization of End-to-End (E2E) TE applications in mobile backhauling networks with a satellite component, assessing the feasibility of the proposed SDN-based integration solution under a practical laboratory setting that combines the use of commercial, experimentation-oriented and emulation equipment and software.Los recientes avances tecnológicos en el dominio de los satélites, como el uso de satélites de alto rendimiento (HTS) con tasas de rendimiento que son magnitudes más altas que los anteriores, o el uso de grandes constelaciones de satélites de órbita no geoestacionaria (GEO), etc. están reduciendo el precio por bit y mejorando las métricas de Calidad de Servicio (QoS) como la latencia, etc., cambiando la forma en que la capacidad se está llevando al mercado, y haciéndola más atractiva para otros servicios como las comunicaciones de banda ancha por satélite. Estas nuevas capacidades, junto con las ventajas ofrecidas por las comunicaciones por satélite, como la cobertura geográfica a gran escala, las inherentes capacidades de difusión / multidifusión y la conectividad altamente confiable, anticipan nuevas oportunidades para la integración de la componente satelital al ecosistema 5G. Uno de los escenarios más atractivos es el backhauling móvil, donde la capacidad del satélite se puede usar para complementar la infraestructura de backhauling terrestre, no solo en áreas de difícil acceso, sino también para la entrega de tráfico de manera más eficiente a los nodos de la Red de Acceso (RAN), una mayor resiliencia y mejor soporte para implementaciones rápidas y temporales de células, así como células en movimiento. En este contexto, este trabajo de tesis se centra en lograr una mejor integración de la red híbrida de backhaul satélital-terrestre, a través del desarrollo de estrategias de ingeniería de tráfico (TE) para gestionar de una mejor manera la capacidad dinámicamente orientable del satélite. Para hacer esto, este trabajo de tesis primero toma los pasos en la definición de un marco de arquitectura que permite una mejor integración de una red híbrida satelital-terrestre de backhaul móvil, gestionando la capacidad del satélite como parte constitutiva de un TE basado en Software Defined Networking (SDN). Bajo esta base, este trabajo de tesis primero propone y evalúa un modelo para el análisis de la capacidad y las estrategias de gestión del tráfico para redes híbridas satelital-terrestre de backhaul móvil basadas en SDN para la dirección de tráfico. El análisis de rendimiento se lleva a cabo en términos de aumento de capacidad que se puede lograr cuando la capacidad de la red de backhaul por satélite se utiliza para el desborde de tráfico, teniendo en cuenta la ubicación de la capacidad del satélite en diferentes niveles de agregación de tráfico y considerando una correlación espacial de la demanda de tráfico. Posteriormente, el trabajo de tesis presenta el desarrollo de estrategias y algoritmos de TE basados en SDN que explotan la capacidad dinámicamente orientable del satelite, provista con fines de resiliencia para utilizar de mejor manera la capacidad satelital al maximizar la utilidad de red en condiciones de falla y no falla en algunos enlaces terrestres, y bajo la consideración de tráfico elástico, inelástico y de unidifusión y multidifusión. El análisis de rendimiento se lleva a cabo en términos de tasas de rechazo, de utilidad, y equidad en comparación con las aplicaciones de TE no basadas en SDN. Finalmente, basado en la definición del diseño de marco de arquitectura, el trabajo de tesis presenta una Prueba de concepto (PoC) experimental y la validación de una solución de integración de enlaces de backhaul satelital-terrestre que se basa en las tecnologías SDN para la realización de aplicaciones de TE de extremo a extremo (E2E) en redes de backhaul móviles, evaluando la viabilidad de la solución propuesta de integración basada en SDN en un entorno práctico de laboratorio que combina el uso de equipos y software comerciales, orientados a la experimentación y emulación.Postprint (published version

    Securing military decision making in a network-centric environment

    Get PDF
    The development of the society and warfare goes hand in hand. With the proliferation of modern information technology, in particular communication technology, concepts such as information warfare and network-centric warfare have emerged. Information has become one of the core elements in military decision making, where the purpose is to gain information superiority with respect to the enemy while denying the enemy from doing the same. Network-centricity comes from the fact that communication networks are used to enable information warfare in the theatre of operations. Thus, the role of the communication network is to support decision making. In this thesis, military decision making in a network-centric environment is analyzed from the perspective of information warfare. Based on the analysis, a set of security requirements are identified. The thesis also proposes a set of solutions and concepts to the vulnerabilities found and analyzes the solutions with respect to the requirements and a set of use scenarios. The main solutions are Packet Level Authentication, which secures the military infrastructure, and Self-healing Networks, which enable the network to restructure itself after a large-scale or dedicated attack. The restructuring process relies on a Context Aware Management architecture, which has originally been developed to allow network nodes to rapidly react to a changing environment. Furthermore, the thesis presents a trust management model based on incomplete trust to cope with compromised nodes. Also privacy issues are discussed; several different privacy classes are identified and the problems with each of them are addressed.reviewe

    Second year technical report on-board processing for future satellite communications systems

    Get PDF
    Advanced baseband and microwave switching techniques for large domestic communications satellites operating in the 30/20 GHz frequency bands are discussed. The nominal baseband processor throughput is one million packets per second (1.6 Gb/s) from one thousand T1 carrier rate customer premises terminals. A frequency reuse factor of sixteen is assumed by using 16 spot antenna beams with the same 100 MHz bandwidth per beam and a modulation with a one b/s per Hz bandwidth efficiency. Eight of the beams are fixed on major metropolitan areas and eight are scanning beams which periodically cover the remainder of the U.S. under dynamic control. User signals are regenerated (demodulated/remodulated) and message packages are reformatted on board. Frequency division multiple access and time division multiplex are employed on the uplinks and downlinks, respectively, for terminals within the coverage area and dwell interval of a scanning beam. Link establishment and packet routing protocols are defined. Also described is a detailed design of a separate 100 x 100 microwave switch capable of handling nonregenerated signals occupying the remaining 2.4 GHz bandwidth with 60 dB of isolation, at an estimated weight and power consumption of approximately 400 kg and 100 W, respectively
    corecore