1,372 research outputs found

    Tunneling on Wheeler Graphs

    Get PDF
    Baier (CPM 2018) describes tunneling as a technique to further exploit redundancies in the Burrows-Wheeler Transform. In this paper we show how to retain indexed text searching on the resulting structure and generalize the concept to Wheeler graphs.Peer reviewe

    On the Hardness and Inapproximability of Recognizing Wheeler Graphs

    Get PDF
    In recent years several compressed indexes based on variants of the Burrows-Wheeler transformation have been introduced. Some of these are used to index structures far more complex than a single string, as was originally done with the FM-index [Ferragina and Manzini, J. ACM 2005]. As such, there has been an increasing effort to better understand under which conditions such an indexing scheme is possible. This has led to the introduction of Wheeler graphs [Gagie et al., Theor. Comput. Sci., 2017]. Gagie et al. showed that de Bruijn graphs, generalized compressed suffix arrays, and several other BWT related structures can be represented as Wheeler graphs, and that Wheeler graphs can be indexed in a way which is space efficient. Hence, being able to recognize whether a given graph is a Wheeler graph, or being able to approximate a given graph by a Wheeler graph, could have numerous applications in indexing. Here we resolve the open question of whether there exists an efficient algorithm for recognizing if a given graph is a Wheeler graph. We present: - The problem of recognizing whether a given graph G=(V,E) is a Wheeler graph is NP-complete for any edge label alphabet of size sigma >= 2, even when G is a DAG. This holds even on a restricted, subset of graphs called d-NFA\u27s for d >= 5. This is in contrast to recent results demonstrating the problem can be solved in polynomial time for d-NFA\u27s where d <= 2. We also show the recognition problem can be solved in linear time for sigma =1; - There exists an 2^{e log sigma + O(n + e)} time exact algorithm where n = |V| and e = |E|. This algorithm relies on graph isomorphism being computable in strictly sub-exponential time; - We define an optimization variant of the problem called Wheeler Graph Violation, abbreviated WGV, where the aim is to remove the minimum number of edges in order to obtain a Wheeler graph. We show WGV is APX-hard, even when G is a DAG, implying there exists a constant C >= 1 for which there is no C-approximation algorithm (unless P = NP). Also, conditioned on the Unique Games Conjecture, for all C >= 1, it is NP-hard to find a C-approximation; - We define the Wheeler Subgraph problem, abbreviated WS, where the aim is to find the largest subgraph which is a Wheeler Graph (the dual of the WGV). In contrast to WGV, we prove that the WS problem is in APX for sigma=O(1); The above findings suggest that most problems under this theme are computationally difficult. However, we identify a class of graphs for which the recognition problem is polynomial time solvable, raising the open question of which parameters determine this problem\u27s difficulty

    Tunneling cosmological state revisited: Origin of inflation with a non-minimally coupled Standard Model Higgs inflaton

    Full text link
    We suggest a path integral formulation for the tunneling cosmological state, which admits a consistent renormalization and renormalization group (RG) improvement in particle physics applications of quantum cosmology. We apply this formulation to the inflationary cosmology driven by the Standard Model (SM) Higgs boson playing the role of an inflaton with a strong non-minimal coupling to gravity. In this way a complete cosmological scenario is obtained, which embraces the formation of initial conditions for the inflationary background in the form of a sharp probability peak in the distribution of the inflaton field and the ongoing generation of the Cosmic Microwave Background (CMB) spectrum on this background. Formation of this probability peak is based on the same RG mechanism which underlies the generation of the CMB spectrum which was recently shown to be compatible with the WMAP data in the Higgs mass range 135.6GeVMH184.5GeV135.6 {\rm GeV} \lesssim M_H\lesssim 184.5 {\rm GeV}. This brings to life a convincing unification of quantum cosmology with the particle phenomenology of the SM, inflation theory, and CMB observations.Comment: 18 pages, 3 figures, LaTe

    Black Hole Evaporation in a Noncommutative Charged Vaidya Model

    Full text link
    The aim of this paper is to study the black hole evaporation and Hawking radiation for a noncommutative charged Vaidya black hole. For this purpose, we determine spherically symmetric charged Vaidya model and then formulate a noncommutative Reissner-Nordstro¨\ddot{o}m-like solution of this model which leads to an exact (tr)(t-r) dependent metric. The behavior of temporal component of this metric and the corresponding Hawking temperature is investigated. The results are shown in the form of graphs. Further, we examine the tunneling process of the charged massive particles through the quantum horizon. It is found that the tunneling amplitude is modified due to noncommutativity. Also, it turns out that black hole evaporates completely in the limits of large time and horizon radius. The effect of charge is to reduce the temperature from maximum value to zero. It is mentioned here that the final stage of black hole evaporation turns out to be a naked singularity.Comment: 25 pages, 36 figures, accepted for publication in J. Exp. Theor. Phy

    Cosmological Sphaleron from Real Tunneling and Its Fate

    Get PDF
    We show that the cosmological sphaleron of Einstein-Yang-Mills system can be produced from real tunneling geometries. The sphaleron will tend to roll down to the vacuum or pure gauge field configuration, when the universe evolves in the Lorentzian signature region with the sphaleron and the corresponding hypersurface being the initial data for the Yang-Mills field and the universe, respectively. However, we can also show that the sphaleron, although unstable, can be regarded as a pseudo-stable solution because its lifetime is even much greater than those of the universe.Comment: 20 pages, LaTex, article 12pt style, TIT/HEP-242/COSMO-3

    Pair production by Schwinger and Breit-Wheeler processes in bi-frequent fields

    Full text link
    Counter-propagating and suitably polarized light (laser) beams can provide conditions for pair production. Here, we consider in more detail the following two situations: (i) In the homogeneity regions of anti-nodes of linearly polarized ultra-high intensity laser beams, the Schwinger process is dynamically assisted by a second high-frequency field, e.g. by a XFEL beam. (ii) A high-energy probe photon beam colliding with a superposition of co-propagating intense laser and XFEL beams gives rise to the laser assisted Breit-Wheeler process. Prospects of such bi-frequent field constellations with respect to the feasibility of conversion of light into matter are discussed
    corecore