178 research outputs found

    Simplified fuzzy logic control of sinusoidal permanent magnet synchronous motor drives

    Get PDF
    Fuzzy Logic Control (FLC) is suitable for a controller design when the system is difficult to model mathematically due to its complexity, nonlinearity and imprecision. It is widely used in high performance drives to obtain precise speed control irrespective of load disturbances and parameter variations. The purpose of this project is to investigate and evaluate speed performance of the FLC in vector controlled Sinusoidal Permanent Magnet Synchronous Motor (SPMSM) drives. The SPMSM is controlled by a vector control technique operating like a separately excited DC motor. The mathematical model of SPMSM drives is simulated using the MATLAB Simulink program. The standard FLC which comprise of 49 rules is initially designed based on common criteria. From investigation on the FLC tuning, two simplified FLCs are designed based on fuzzy rules reduction with systematic and reasonable approaches. The efficacies of the FLC simplification are determined by conducting a comparative analysis between standard FLC and simplified FLCs over a wide range of operating conditions. This is based on simulation approach including various initial step speed commands, load disturbance, step reduction in speed command, inertia variations, and speed reversal operation. The FLCs are developed using the Fuzzy Logic Toolbox in MATLAB. The simulation results show that the simplified FLCs obtain comparable performance with the standard FLC in some cases while in others, they perform better than the standard FLC. The simulation results are further evaluated by an experimental investigation. The FLC, co-ordinate transformation and hysteresis current controllers are implemented in the software using Simulink, Fuzzy logic Toolbox and Real-time interface. The hardware implementation consisting of digital signal processor, voltage source inverter, resolver-to-linear DC converter, current sensors and SPMSM are equipped with a speed resolver. As a result, the simplified FLCs are capable to obtain high performance standards with simple rules, less complex structure, less computation time besides solving the limitation of processor and memory resources

    Torque Control

    Get PDF
    This book is the result of inspirations and contributions from many researchers, a collection of 9 works, which are, in majority, focalised around the Direct Torque Control and may be comprised of three sections: different techniques for the control of asynchronous motors and double feed or double star induction machines, oriented approach of recent developments relating to the control of the Permanent Magnet Synchronous Motors, and special controller design and torque control of switched reluctance machine

    Control of the interaction of a gantry robot end effector with the environment by the adaptive behaviour of its joint drive actuators

    Get PDF
    The thesis examines a way in which the performance of the robot electric actuators can be precisely and accurately force controlled where there is a need for maintaining a stable specified contact force with an external environment. It describes the advantages of the proposed research, which eliminates the need for any external sensors and solely depends on the precise torque control of electric motors. The aim of the research is thus the development of a software based control system and then a proposal for possible inclusion of this control philosophy in existing range of automated manufacturing techniques.The primary aim of the research is to introduce force controlled behaviour in the electric actuators when the robot interacts with the environment, by measuring and controlling the contact forces between them. A software control system is developed and implemented on a robot gantry manipulator to follow two dimensional contours without the explicit geometrical knowledge of those contours. The torque signatures from the electric actuators are monitored and maintained within a desired force band. The secondary aim is the optimal design of the software controller structure. Experiments are performed and the mathematical model is validated against conventional Proportional Integral Derivative (PID) control. Fuzzy control is introduced in the software architecture to incorporate a sophisticated control. Investigation is carried out with the combination of PID and Fuzzy logic which depend on the geometrical complexity of the external environment to achieve the expected results

    A Scalable System Architecture for High-Performance Fault Tolerant Machine Drives

    Get PDF
    When targeting mission critical applications, the design of the electronic actuation systems needs to consider many requirements and constraints not typical in standard industrial applications. One of these is tolerance to faults, as the unplanned shutdown of a critical subsystem, if not handled correctly, could lead to financial harm, environmental disaster, or even loss of life. One way this can be avoided is through the design of an electric drive systems based on multi-phase machines that can keep operating, albeit with degraded performance, in a partial configuration under fault conditions. Distributed architectures are uniquely suited to meet these challenges, by providing a large degree of isolation between the various components. This paper presents a system architecture suitable for scalable and high-performance fault tolerant machine drive systems. the effectiveness of this system is demonstrated through theoretical analysis and experimental verification on a six-phase machine

    Traction control in electric vehicles

    Get PDF
    Tese de Mestrado Integrado. Engenharia Electrotécnica e de Computadores. Área de Especialização de Automação. Faculdade de Engenharia. Universidade do Porto. 201

    Advances in Rotating Electric Machines

    Get PDF
    It is difficult to imagine a modern society without rotating electric machines. Their use has been increasing not only in the traditional fields of application but also in more contemporary fields, including renewable energy conversion systems, electric aircraft, aerospace, electric vehicles, unmanned propulsion systems, robotics, etc. This has contributed to advances in the materials, design methodologies, modeling tools, and manufacturing processes of current electric machines, which are characterized by high compactness, low weight, high power density, high torque density, and high reliability. On the other hand, the growing use of electric machines and drives in more critical applications has pushed forward the research in the area of condition monitoring and fault tolerance, leading to the development of more reliable diagnostic techniques and more fault-tolerant machines. This book presents and disseminates the most recent advances related to the theory, design, modeling, application, control, and condition monitoring of all types of rotating electric machines

    Applications of Power Electronics:Volume 1

    Get PDF

    Advancements in Real-Time Simulation of Power and Energy Systems

    Get PDF
    Modern power and energy systems are characterized by the wide integration of distributed generation, storage and electric vehicles, adoption of ICT solutions, and interconnection of different energy carriers and consumer engagement, posing new challenges and creating new opportunities. Advanced testing and validation methods are needed to efficiently validate power equipment and controls in the contemporary complex environment and support the transition to a cleaner and sustainable energy system. Real-time hardware-in-the-loop (HIL) simulation has proven to be an effective method for validating and de-risking power system equipment in highly realistic, flexible, and repeatable conditions. Controller hardware-in-the-loop (CHIL) and power hardware-in-the-loop (PHIL) are the two main HIL simulation methods used in industry and academia that contribute to system-level testing enhancement by exploiting the flexibility of digital simulations in testing actual controllers and power equipment. This book addresses recent advances in real-time HIL simulation in several domains (also in new and promising areas), including technique improvements to promote its wider use. It is composed of 14 papers dealing with advances in HIL testing of power electronic converters, power system protection, modeling for real-time digital simulation, co-simulation, geographically distributed HIL, and multiphysics HIL, among other topics

    Modelling and Control of Switched Reluctance Machines

    Get PDF
    Today, switched reluctance machines (SRMs) play an increasingly important role in various sectors due to advantages such as robustness, simplicity of construction, low cost, insensitivity to high temperatures, and high fault tolerance. They are frequently used in fields such as aeronautics, electric and hybrid vehicles, and wind power generation. This book is a comprehensive resource on the design, modeling, and control of SRMs with methods that demonstrate their good performance as motors and generators
    corecore