185 research outputs found

    Deep Learning Techniques for Music Generation -- A Survey

    Full text link
    This paper is a survey and an analysis of different ways of using deep learning (deep artificial neural networks) to generate musical content. We propose a methodology based on five dimensions for our analysis: Objective - What musical content is to be generated? Examples are: melody, polyphony, accompaniment or counterpoint. - For what destination and for what use? To be performed by a human(s) (in the case of a musical score), or by a machine (in the case of an audio file). Representation - What are the concepts to be manipulated? Examples are: waveform, spectrogram, note, chord, meter and beat. - What format is to be used? Examples are: MIDI, piano roll or text. - How will the representation be encoded? Examples are: scalar, one-hot or many-hot. Architecture - What type(s) of deep neural network is (are) to be used? Examples are: feedforward network, recurrent network, autoencoder or generative adversarial networks. Challenge - What are the limitations and open challenges? Examples are: variability, interactivity and creativity. Strategy - How do we model and control the process of generation? Examples are: single-step feedforward, iterative feedforward, sampling or input manipulation. For each dimension, we conduct a comparative analysis of various models and techniques and we propose some tentative multidimensional typology. This typology is bottom-up, based on the analysis of many existing deep-learning based systems for music generation selected from the relevant literature. These systems are described and are used to exemplify the various choices of objective, representation, architecture, challenge and strategy. The last section includes some discussion and some prospects.Comment: 209 pages. This paper is a simplified version of the book: J.-P. Briot, G. Hadjeres and F.-D. Pachet, Deep Learning Techniques for Music Generation, Computational Synthesis and Creative Systems, Springer, 201

    AI Methods in Algorithmic Composition: A Comprehensive Survey

    Get PDF
    Algorithmic composition is the partial or total automation of the process of music composition by using computers. Since the 1950s, different computational techniques related to Artificial Intelligence have been used for algorithmic composition, including grammatical representations, probabilistic methods, neural networks, symbolic rule-based systems, constraint programming and evolutionary algorithms. This survey aims to be a comprehensive account of research on algorithmic composition, presenting a thorough view of the field for researchers in Artificial Intelligence.This study was partially supported by a grant for the MELOMICS project (IPT-300000-2010-010) from the Spanish Ministerio de Ciencia e Innovación, and a grant for the CAUCE project (TSI-090302-2011-8) from the Spanish Ministerio de Industria, Turismo y Comercio. The first author was supported by a grant for the GENEX project (P09-TIC- 5123) from the Consejería de Innovación y Ciencia de Andalucía

    The Effect of Explicit Structure Encoding of Deep Neural Networks for Symbolic Music Generation

    Full text link
    With recent breakthroughs in artificial neural networks, deep generative models have become one of the leading techniques for computational creativity. Despite very promising progress on image and short sequence generation, symbolic music generation remains a challenging problem since the structure of compositions are usually complicated. In this study, we attempt to solve the melody generation problem constrained by the given chord progression. This music meta-creation problem can also be incorporated into a plan recognition system with user inputs and predictive structural outputs. In particular, we explore the effect of explicit architectural encoding of musical structure via comparing two sequential generative models: LSTM (a type of RNN) and WaveNet (dilated temporal-CNN). As far as we know, this is the first study of applying WaveNet to symbolic music generation, as well as the first systematic comparison between temporal-CNN and RNN for music generation. We conduct a survey for evaluation in our generations and implemented Variable Markov Oracle in music pattern discovery. Experimental results show that to encode structure more explicitly using a stack of dilated convolution layers improved the performance significantly, and a global encoding of underlying chord progression into the generation procedure gains even more.Comment: 8 pages, 13 figure

    Automatic Phrase Continuation from Guitar and Bass guitar Melodies

    Get PDF

    Machine learning research that matters for music creation : a case study

    Get PDF
    Research applying machine learning to music modeling and generation typically proposes model architectures, training methods and datasets, and gauges system performance using quantitative measures like sequence likelihoods and/or qualitative listening tests. Rarely does such work explicitly question and analyse its usefulness for and impact on real-world practitioners, and then build on those outcomes to inform the development and application of machine learning. This article attempts to do these things for machine learning applied to music creation. Together with practitioners, we develop and use several applications of machine learning for music creation, and present a public concert of the results. We reflect on the entire experience to arrive at several ways of advancing these and similar applications of machine learning to music creation.QC 20180827</p

    Computational Creativity and Music Generation Systems: An Introduction to the State of the Art

    Get PDF
    Computational Creativity is a multidisciplinary field that tries to obtain creative behaviors from computers. One of its most prolific subfields is that of Music Generation (also called Algorithmic Composition or Musical Metacreation), that uses computational means to compose music. Due to the multidisciplinary nature of this research field, it is sometimes hard to define precise goals and to keep track of what problems can be considered solved by state-of-the-art systems and what instead needs further developments. With this survey, we try to give a complete introduction to those who wish to explore Computational Creativity and Music Generation. To do so, we first give a picture of the research on the definition and the evaluation of creativity, both human and computational, needed to understand how computational means can be used to obtain creative behaviors and its importance within Artificial Intelligence studies. We then review the state of the art of Music Generation Systems, by citing examples for all the main approaches to music generation, and by listing the open challenges that were identified by previous reviews on the subject. For each of these challenges, we cite works that have proposed solutions, describing what still needs to be done and some possible directions for further research
    corecore