54 research outputs found

    Matrix Factorization at Scale: a Comparison of Scientific Data Analytics in Spark and C+MPI Using Three Case Studies

    Full text link
    We explore the trade-offs of performing linear algebra using Apache Spark, compared to traditional C and MPI implementations on HPC platforms. Spark is designed for data analytics on cluster computing platforms with access to local disks and is optimized for data-parallel tasks. We examine three widely-used and important matrix factorizations: NMF (for physical plausability), PCA (for its ubiquity) and CX (for data interpretability). We apply these methods to TB-sized problems in particle physics, climate modeling and bioimaging. The data matrices are tall-and-skinny which enable the algorithms to map conveniently into Spark's data-parallel model. We perform scaling experiments on up to 1600 Cray XC40 nodes, describe the sources of slowdowns, and provide tuning guidance to obtain high performance

    Toward Reliable and Efficient Message Passing Software for HPC Systems: Fault Tolerance and Vector Extension

    Get PDF
    As the scale of High-performance Computing (HPC) systems continues to grow, researchers are devoted themselves to achieve the best performance of running long computing jobs on these systems. My research focus on reliability and efficiency study for HPC software. First, as systems become larger, mean-time-to-failure (MTTF) of these HPC systems is negatively impacted and tends to decrease. Handling system failures becomes a prime challenge. My research aims to present a general design and implementation of an efficient runtime-level failure detection and propagation strategy targeting large-scale, dynamic systems that is able to detect both node and process failures. Using multiple overlapping topologies to optimize the detection and propagation, minimizing the incurred overhead sand guaranteeing the scalability of the entire framework. Results from different machines and benchmarks compared to related works shows that my design and implementation outperforms non-HPC solutions significantly, and is competitive with specialized HPC solutions that can manage only MPI applications. Second, I endeavor to implore instruction level parallelization to achieve optimal performance. Novel processors support long vector extensions, which enables researchers to exploit the potential peak performance of target architectures. Intel introduced Advanced Vector Extension (AVX512 and AVX2) instructions for x86 Instruction Set Architecture (ISA). Arm introduced Scalable Vector Extension (SVE) with a new set of A64 instructions. Both enable greater parallelisms. My research utilizes long vector reduction instructions to improve the performance of MPI reduction operations. Also, I use gather and scatter feature to speed up the packing and unpacking operation in MPI. The evaluation of the resulting software stack under different scenarios demonstrates that the approach is not only efficient but also generalizable to many vector architecture and efficient

    One-Sided Communication for High Performance Computing Applications

    Get PDF
    Thesis (Ph.D.) - Indiana University, Computer Sciences, 2009Parallel programming presents a number of critical challenges to application developers. Traditionally, message passing, in which a process explicitly sends data and another explicitly receives the data, has been used to program parallel applications. With the recent growth in multi-core processors, the level of parallelism necessary for next generation machines is cause for concern in the message passing community. The one-sided programming paradigm, in which only one of the two processes involved in communication actively participates in message transfer, has seen increased interest as a potential replacement for message passing. One-sided communication does not carry the heavy per-message overhead associated with modern message passing libraries. The paradigm offers lower synchronization costs and advanced data manipulation techniques such as remote atomic arithmetic and synchronization operations. These combine to present an appealing interface for applications with random communication patterns, which traditionally present message passing implementations with difficulties. This thesis presents a taxonomy of both the one-sided paradigm and of applications which are ideal for the one-sided interface. Three case studies, based on real-world applications, are used to motivate both taxonomies and verify the applicability of the MPI one-sided communication and Cray SHMEM one-sided interfaces to real-world problems. While our results show a number of short-comings with existing implementations, they also suggest that a number of applications could benefit from the one-sided paradigm. Finally, an implementation of the MPI one-sided interface within Open MPI is presented, which provides a number of unique performance features necessary for efficient use of the one-sided programming paradigm

    Proceedings of the 7th International Conference on PGAS Programming Models

    Get PDF

    Optimization of communication intensive applications on HPC networks

    Get PDF
    Communication is a necessary but overhead inducing component of parallel programming. Its impact on application design and performance is due to several related aspects of a parallel job execution: network topology, routing protocol, suitability of algorithm being used to the network, job placement, etc. This thesis is aimed at developing an understanding of how communication plays out on networks of high performance computing systems and exploring methods that can be used to improve communication performance of large scale applications. Broadly speaking, three topics have been studied in detail in this thesis. The first of these topics is task mapping and job placement on practical installations of torus and dragonfly networks. Next, use of supervised learning algorithms for conducting diagnostic studies of how communication evolves on networks is explored. Finally, efficacy of packet-level simulations for prediction-based studies of communication performance on different networks using different network parameters is analyzed. The primary contribution of this thesis is development of scalable diagnostic and prediction methods that can assist in the process of network designing, adapting applications to future systems, and optimizing execution of applications on existing systems. These meth- ods include a supervised learning approach, a functional modeling tool (called Damselfly), and a PDES-based packet level simulator (called TraceR), all of which are described in this thesis

    Profilage et débogage par prise de traces efficaces d'applications hybrides multi-threadées HPC

    Get PDF
    Supercomputers’ evolution is at the source of both hardware and software challenges. In the quest for the highest computing power, the interdependence in-between simulation components is becoming more and more impacting, requiring new approaches. This thesis is focused on the software development aspect and particularly on the observation of parallel software when being run on several thousand cores. This observation aims at providing developers with the necessary feedback when running a program on an execution substrate which has not been modeled yet because of its complexity. In this purpose, we firstly introduce the development process from a global point of view, before describing developer tools and related work. In a second time, we present our contribution which consists in a trace based profiling and debugging tool and its evolution towards an on-line coupling method which as we will show is more scalable as it overcomes IOs limitations. Our contribution also covers our time-stamp synchronisation algorithm for tracing purposes which relies on a probabilistic approach with quantified error. We also present a tool allowing machine characterisation from the MPI aspect and demonstrate the presence of machine noise for both point to point and collectives, justifying the use of an empirical approach. In summary, this work proposes and motivates an alternative approach to trace based event collection while preserving event granularity and a reduced overheadL’évolution des supercalculateurs est Ă  la source de dĂ©fis logiciels et architecturaux. Dans la quĂȘte de puissance de calcul, l’interdĂ©pendance des Ă©lĂ©ments du processus de simulation devient de plus en plus impactante et requiert de nouvelles approches. Cette thĂšse se concentre sur le dĂ©veloppement logiciel et particuliĂšrement sur l’observation des programmes parallĂšles s’exĂ©cutant sur des milliers de cƓurs. Dans ce but, nous dĂ©crivons d’abord le processus de dĂ©veloppement de maniĂšre globale avant de prĂ©senter les outils existants et les travaux associĂ©s. Dans un second temps, nous dĂ©taillons notre contribution qui consiste d’une part en des outils de dĂ©bogage et profilage par prise de traces, et d’autre part en leur Ă©volution vers un couplage en ligne qui palie les limitations d’entrĂ©es–sorties. Notre contribution couvre Ă©galement la synchronisation des horloges pour la prise de traces avec la prĂ©sentation d’un algorithme de synchronisation probabiliste dont nous avons quantifiĂ© l’erreur. En outre, nous dĂ©crivons un outil de caractĂ©risation machine qui couvre l’aspect MPI. Un tel outil met en Ă©vidence la prĂ©sence de bruit aussi bien sur les communications de type point-Ă -point que de type collective. Enfin, nous proposons et motivons une alternative Ă  la collecte d’évĂ©nements par prise de traces tout en prĂ©servant la granularitĂ© des Ă©vĂ©nements et un impact rĂ©duit sur les performances, tant sur le volet utilisation CPU que sur les entrĂ©es–sortie

    Behavioural Types: from Theory to Tools

    Get PDF
    This book presents research produced by members of COST Action IC1201: Behavioural Types for Reliable Large-Scale Software Systems (BETTY), a European research network that was funded from October 2012 to October 2016. The technical theme of BETTY was the use of behavioural type systems in programming languages, to specify and verify properties of programs beyond the traditional use of type systems to describe data processing. A significant area within behavioural types is session types, which concerns the use of type-theoretic techniques to describe communication protocols so that static typechecking or dynamic monitoring can verify that protocols are implemented correctly. This is closely related to the topic of choreography, in which system design starts from a description of the overall communication flows. Another area is behavioural contracts, which describe the obligations of interacting agents in a way that enables blame to be attributed to the agent responsible for failed interaction. Type-theoretic techniques can also be used to analyse potential deadlocks due to cyclic dependencies between inter-process interactions. BETTY was organised into four Working Groups: (1) Foundations; (2) Security; (3) Programming Languages; (4) Tools and Applications. Working Groups 1–3 produced “state-of-the-art reports”, which originally intended to take snapshots of the field at the time the network started, but grew into substantial survey articles including much research carried out during the network [1–3]. The situation for Working Group 4 was different. When the network started, the community had produced relatively few implementations of programming languages or tools. One of the aims of the network was to encourage more implementation work, and this was a great success. The community as a whole has developed a greater interest in putting theoretical ideas into practice. The sixteen chapters in this book describe systems that were either completely developed, or substantially extended, during BETTY. The total of 41 co-authors represents a significant proportion of the active participants in the network (around 120 people who attended at least one meeting). The book is a report on the new state of the art created by BETTY in xv xvi Preface the area of Working Group 4, and the title “Behavioural Types: from Theory to Tools” summarises the trajectory of the community during the last four years. The book begins with two tutorials by Atzei et al. on contract-oriented design of distributed systems. Chapter 1 introduces the CO2 contract specifi- cation language and the Diogenes toolchain. Chapter 2 describes how timing constraints can be incorporated into the framework and checked with the CO2 middleware. Part of the CO2 middleware is a monitoring system, and the theme of monitoring continues in the next two chapters. In Chapter 3, Attard et al. present detectEr, a runtime monitoring tool for Erlang programs that allows correctness properties to be expressed in Hennessy-Milner logic. In Chapter 4, which is the first chapter about session types, Neykova and Yoshida describe a runtime verification framework for Python programs. Communication protocols are specified in the Scribble language, which is based on multiparty session types. The next three chapters deal with choreographic programming. In Chap- ter 5, Debois and Hildebrandt present a toolset for working with dynamic condition response (DCR) graphs, which are a graphical formalism for choreography. Chapter 6, by Lange et al., continues the graphical theme with ChorGram, a tool for synthesising global graphical choreographies from collections of communicating finite-state automata. Giallorenzo et al., in Chapter 7, consider runtime adaptation. They describe AIOCJ, a choreographic programming language in which runtime adaptation is supported with a guarantee that it doesn’t introduce deadlocks or races. Deadlock analysis is important in other settings too, and there are two more chapters about it. In Chapter 8, Padovani describes the Hypha tool, which uses a type-based approach to check deadlock-freedom and lock-freedom of systems modelled in a form of pi-calculus. In Chapter 9, Garcia and Laneve present a tool for analysing deadlocks in Java programs; this tool, called JaDA, is based on a behavioural type system. The next three chapters report on projects that have added session types to functional programming languages in order to support typechecking of communication-based code. In Chapter 10, Orchard and Yoshida describe an implementation of session types in Haskell, and survey several approaches to typechecking the linearity conditions required for safe session implemen- tation. In Chapter 11, Melgratti and Padovani describe an implementation of session types in OCaml. Their system uses runtime linearity checking. In Chapter 12, Lindley and Morris describe an extension of the web programming language Links with session types; their work contrasts with the previous two chapters in being less constrained by an existing language design. Continuing the theme of session types in programming languages, the next two chapters describe two approaches based on Java. Hu’s work, presented in Chapter 13, starts with the Scribble description of a multiparty session type and generates an API in the form of a collection of Java classes, each class containing the communication methods that are available in a particular state of the protocol. Dardha et al., in Chapter 14, also start with a Scribble specification. Their StMungo tool generates an API as a single class with an associated typestate specification to constrain sequences of method calls. Code that uses the API can be checked for correctness with the Mungo typechecker. Finally, there are two chapters about programming with the MPI libraries. Chapter 15, by Ng and Yoshida, uses an extension of Scribble, called Pabble, to describe protocols that parametric in the number of runtime roles. From a Pabble specification they generate C code that uses MPI for communication and is guaranteed correct by construction. Chapter 16, by Ng et al., describes the ParTypes framework for analysing existing C+MPI programs with respect to protocols defined in an extension of Scribble. We hope that the book will serve a useful purpose as a report on the activities of COST Action IC1201 and as a survey of programming languages and tools based on behavioural types

    Behavioural Types: from Theory to Tools

    Get PDF
    This book presents research produced by members of COST Action IC1201: Behavioural Types for Reliable Large-Scale Software Systems (BETTY), a European research network that was funded from October 2012 to October 2016. The technical theme of BETTY was the use of behavioural type systems in programming languages, to specify and verify properties of programs beyond the traditional use of type systems to describe data processing. A significant area within behavioural types is session types, which concerns the use of type-theoretic techniques to describe communication protocols so that static typechecking or dynamic monitoring can verify that protocols are implemented correctly. This is closely related to the topic of choreography, in which system design starts from a description of the overall communication flows. Another area is behavioural contracts, which describe the obligations of interacting agents in a way that enables blame to be attributed to the agent responsible for failed interaction. Type-theoretic techniques can also be used to analyse potential deadlocks due to cyclic dependencies between inter-process interactions. BETTY was organised into four Working Groups: (1) Foundations; (2) Security; (3) Programming Languages; (4) Tools and Applications. Working Groups 1–3 produced “state-of-the-art reports”, which originally intended to take snapshots of the field at the time the network started, but grew into substantial survey articles including much research carried out during the network [1–3]. The situation for Working Group 4 was different. When the network started, the community had produced relatively few implementations of programming languages or tools. One of the aims of the network was to encourage more implementation work, and this was a great success. The community as a whole has developed a greater interest in putting theoretical ideas into practice. The sixteen chapters in this book describe systems that were either completely developed, or substantially extended, during BETTY. The total of 41 co-authors represents a significant proportion of the active participants in the network (around 120 people who attended at least one meeting). The book is a report on the new state of the art created by BETTY in xv xvi Preface the area of Working Group 4, and the title “Behavioural Types: from Theory to Tools” summarises the trajectory of the community during the last four years. The book begins with two tutorials by Atzei et al. on contract-oriented design of distributed systems. Chapter 1 introduces the CO2 contract specifi- cation language and the Diogenes toolchain. Chapter 2 describes how timing constraints can be incorporated into the framework and checked with the CO2 middleware. Part of the CO2 middleware is a monitoring system, and the theme of monitoring continues in the next two chapters. In Chapter 3, Attard et al. present detectEr, a runtime monitoring tool for Erlang programs that allows correctness properties to be expressed in Hennessy-Milner logic. In Chapter 4, which is the first chapter about session types, Neykova and Yoshida describe a runtime verification framework for Python programs. Communication protocols are specified in the Scribble language, which is based on multiparty session types. The next three chapters deal with choreographic programming. In Chap- ter 5, Debois and Hildebrandt present a toolset for working with dynamic condition response (DCR) graphs, which are a graphical formalism for choreography. Chapter 6, by Lange et al., continues the graphical theme with ChorGram, a tool for synthesising global graphical choreographies from collections of communicating finite-state automata. Giallorenzo et al., in Chapter 7, consider runtime adaptation. They describe AIOCJ, a choreographic programming language in which runtime adaptation is supported with a guarantee that it doesn’t introduce deadlocks or races. Deadlock analysis is important in other settings too, and there are two more chapters about it. In Chapter 8, Padovani describes the Hypha tool, which uses a type-based approach to check deadlock-freedom and lock-freedom of systems modelled in a form of pi-calculus. In Chapter 9, Garcia and Laneve present a tool for analysing deadlocks in Java programs; this tool, called JaDA, is based on a behavioural type system. The next three chapters report on projects that have added session types to functional programming languages in order to support typechecking of communication-based code. In Chapter 10, Orchard and Yoshida describe an implementation of session types in Haskell, and survey several approaches to typechecking the linearity conditions required for safe session implemen- tation. In Chapter 11, Melgratti and Padovani describe an implementation of session types in OCaml. Their system uses runtime linearity checking. In Chapter 12, Lindley and Morris describe an extension of the web programming language Links with session types; their work contrasts with the previous two chapters in being less constrained by an existing language design. Continuing the theme of session types in programming languages, the next two chapters describe two approaches based on Java. Hu’s work, presented in Chapter 13, starts with the Scribble description of a multiparty session type and generates an API in the form of a collection of Java classes, each class containing the communication methods that are available in a particular state of the protocol. Dardha et al., in Chapter 14, also start with a Scribble specification. Their StMungo tool generates an API as a single class with an associated typestate specification to constrain sequences of method calls. Code that uses the API can be checked for correctness with the Mungo typechecker. Finally, there are two chapters about programming with the MPI libraries. Chapter 15, by Ng and Yoshida, uses an extension of Scribble, called Pabble, to describe protocols that parametric in the number of runtime roles. From a Pabble specification they generate C code that uses MPI for communication and is guaranteed correct by construction. Chapter 16, by Ng et al., describes the ParTypes framework for analysing existing C+MPI programs with respect to protocols defined in an extension of Scribble. We hope that the book will serve a useful purpose as a report on the activities of COST Action IC1201 and as a survey of programming languages and tools based on behavioural types
    • 

    corecore