1,613 research outputs found

    Multi-year mapping of water demand at crop level:An end-to-end workflow based on high-resolution crop type maps and meteorological data

    Get PDF
    This article presents a novel system that produces multiyear high-resolution irrigation water demand maps for agricultural areas, enabling a new level of detail for irrigation support for farmers and agricultural stakeholders. The system is based on a scalable distributed deep learning (DL) model trained on dense time series of Sentinel-2 images and a large training set for the first year of observation and fine tuned on new labeled data for the consecutive years. The trained models are used to generate multiyear crop type maps, which are assimilated together with the Sentinel-2 dense time series and the meteorological data into a physically based agrohydrological model to derive the irrigation water demand for different crops. To process the required large volume of multiyear Copernicus Sentinel-2 data, the software architecture of the proposed system has been built on the integration of the Food Security thematic exploitation platform (TEP) and the data-intensive artificial intelligence Hopsworks platform. While the Food Security TEP provides easy access to Sentinel-2 data and the possibility of developing processing algorithms directly in the cloud, the Hopsworks platform has been used to train DL algorithms in a distributed manner. The experimental analysis was carried out in the upper part of the Danube Basin for the years 2018, 2019, and 2020 considering 37 Sentinel-2 tiles acquired in Austria, Moravia, Hungary, Slovakia, and Germany

    Implementation and scaling of the fully coupled Terrestrial Systems Modeling Platform (TerrSysMP) in a massively parallel supercomputing environment – a case study on JUQUEEN (IBM Blue Gene/Q)

    Get PDF
    Continental-scale hyper-resolution simulations constitute a grand challenge in characterizing non-linear feedbacks of states and fluxes of the coupled water, energy, and biogeochemical cycles of terrestrial systems. Tackling this challenge requires advanced coupling and supercomputing technologies for earth system models that are discussed in this study, utilizing the example of the implementation of the newly developed Terrestrial Systems Modeling Platform (TerrSysMP) on JUQUEEN (IBM Blue Gene/Q) of the Jülich Supercomputing Centre, Germany. The applied coupling strategies rely on the Multiple Program Multiple Data (MPMD) paradigm and require memory and load balancing considerations in the exchange of the coupling fields between different component models and allocation of computational resources, respectively. These considerations can be reached with advanced profiling and tracing tools leading to the efficient use of massively parallel computing environments, which is then mainly determined by the parallel performance of individual component models. However, the problem of model I/O and initialization in the peta-scale range requires major attention, because this constitutes a true big data challenge in the perspective of future exa-scale capabilities, which is unsolved

    Data-Intensive architecture for scientific knowledge discovery

    Get PDF
    This paper presents a data-intensive architecture that demonstrates the ability to support applications from a wide range of application domains, and support the different types of users involved in defining, designing and executing data-intensive processing tasks. The prototype architecture is introduced, and the pivotal role of DISPEL as a canonical language is explained. The architecture promotes the exploration and exploitation of distributed and heterogeneous data and spans the complete knowledge discovery process, from data preparation, to analysis, to evaluation and reiteration. The architecture evaluation included large-scale applications from astronomy, cosmology, hydrology, functional genetics, imaging processing and seismology

    The Open Source DataTurbine Initiative: Streaming Data Middleware for Environmental Observing Systems

    Get PDF
    The Open Source DataTurbine Initiative is an international community of scientists and engineers sharing a common interest in real-time streaming data middleware and applications. The technology base of the OSDT Initiative is the DataTurbine open source middleware. Key applications of DataTurbine include coral reef monitoring, lake monitoring and limnology, biodiversity and animal tracking, structural health monitoring and earthquake engineering, airborne environmental monitoring, and environmental sustainability. DataTurbine software emerged as a commercial product in the 1990 s from collaborations between NASA and private industry. In October 2007, a grant from the USA National Science Foundation (NSF) Office of Cyberinfrastructure allowed us to transition DataTurbine from a proprietary software product into an open source software initiative. This paper describes the DataTurbine software and highlights key applications in environmental monitoring

    Report of the proceedings of the Colloquium and Workshop on Multiscale Coupled Modeling

    Get PDF
    The Colloquium and Workshop on Multiscale Coupled Modeling was held for the purpose of addressing modeling issues of importance to planning for the Cooperative Multiscale Experiment (CME). The colloquium presentations attempted to assess the current ability of numerical models to accurately simulate the development and evolution of mesoscale cloud and precipitation systems and their cycling of water substance, energy, and trace species. The primary purpose of the workshop was to make specific recommendations for the improvement of mesoscale models prior to the CME, their coupling with cloud, cumulus ensemble, hydrology, air chemistry models, and the observational requirements to initialize and verify these models

    A survey of high level frameworks in block-structured adaptive mesh refinement packages

    Get PDF
    pre-printOver the last decade block-structured adaptive mesh refinement (SAMR) has found increasing use in large, publicly available codes and frameworks. SAMR frameworks have evolved along different paths. Some have stayed focused on specific domain areas, others have pursued a more general functionality, providing the building blocks for a larger variety of applications. In this survey paper we examine a representative set of SAMR packages and SAMR-based codes that have been in existence for half a decade or more, have a reasonably sized and active user base outside of their home institutions, and are publicly available. The set consists of a mix of SAMR packages and application codes that cover a broad range of scientific domains. We look at their high-level frameworks, their design trade-offs and their approach to dealing with the advent of radical changes in hardware architecture. The codes included in this survey are BoxLib, Cactus, Chombo, Enzo, FLASH, and Uintah

    Research and Education in Computational Science and Engineering

    Get PDF
    Over the past two decades the field of computational science and engineering (CSE) has penetrated both basic and applied research in academia, industry, and laboratories to advance discovery, optimize systems, support decision-makers, and educate the scientific and engineering workforce. Informed by centuries of theory and experiment, CSE performs computational experiments to answer questions that neither theory nor experiment alone is equipped to answer. CSE provides scientists and engineers of all persuasions with algorithmic inventions and software systems that transcend disciplines and scales. Carried on a wave of digital technology, CSE brings the power of parallelism to bear on troves of data. Mathematics-based advanced computing has become a prevalent means of discovery and innovation in essentially all areas of science, engineering, technology, and society; and the CSE community is at the core of this transformation. However, a combination of disruptive developments---including the architectural complexity of extreme-scale computing, the data revolution that engulfs the planet, and the specialization required to follow the applications to new frontiers---is redefining the scope and reach of the CSE endeavor. This report describes the rapid expansion of CSE and the challenges to sustaining its bold advances. The report also presents strategies and directions for CSE research and education for the next decade.Comment: Major revision, to appear in SIAM Revie

    Urban Land Cover Classification with Missing Data Modalities Using Deep Convolutional Neural Networks

    Get PDF
    Automatic urban land cover classification is a fundamental problem in remote sensing, e.g. for environmental monitoring. The problem is highly challenging, as classes generally have high inter-class and low intra-class variance. Techniques to improve urban land cover classification performance in remote sensing include fusion of data from different sensors with different data modalities. However, such techniques require all modalities to be available to the classifier in the decision-making process, i.e. at test time, as well as in training. If a data modality is missing at test time, current state-of-the-art approaches have in general no procedure available for exploiting information from these modalities. This represents a waste of potentially useful information. We propose as a remedy a convolutional neural network (CNN) architecture for urban land cover classification which is able to embed all available training modalities in a so-called hallucination network. The network will in effect replace missing data modalities in the test phase, enabling fusion capabilities even when data modalities are missing in testing. We demonstrate the method using two datasets consisting of optical and digital surface model (DSM) images. We simulate missing modalities by assuming that DSM images are missing during testing. Our method outperforms both standard CNNs trained only on optical images as well as an ensemble of two standard CNNs. We further evaluate the potential of our method to handle situations where only some DSM images are missing during testing. Overall, we show that we can clearly exploit training time information of the missing modality during testing
    • …
    corecore