122 research outputs found

    A 2x2 bit multiplier using hybrid 13t full adder with vedic mathematics method

    Get PDF
    Various arithmetic circuits such as multipliers require full adder (FA) as the main block for the circuit to operate. Speed and energy consumption become very vital in design consideration for a low power adder. In this paper, a 2x2 bit Vedic multiplier using hybrid full adder (HFA) with 13 transistors (13T) had been designed successfully. The design was simulated using Synopsys Custom Tools in General Purpose Design Kit (GPDK) 90 nm CMOS technology process. In this design, four AND gates and two hybrid FA (HFAs) are cascaded together and each HFA is constructed from three modules. The cascaded module is arranged in the Vedic mathematics algorithm. This algorithm satisfied the requirement of a fast multiplication operation because of the vertical and crosswise architecture from the Urdhva Triyakbyam Sutra which reduced the number of partial products compared to the conventional multiplication algorithm. With the combination of hybrid full adder and Vedic mathematics, a new combination of multiplier method with low power and low delay is produced. Performance parameters such as power consumption and delay were compared to some of the existing designs. With a 1V voltage supply, the average power consumption of the proposed multiplier was found to be 22.96 µW and a delay of 161 ps

    Photonic Modulation and Demodulation techniques for Multi-Gb/s Millimetre wave Wireless Links

    Full text link
    Los sistemas de radio sobre fibra(Radio Over fibre ROF) ofrecen el ancho de banda y flexibilidad necesario para la generación y distribución de del señales inalámbricas del futuro en una arquitectura de red óptica, que reduce el coste de las redes centralizando el procesado y simplificando la ubicación de la antena (estación de base EB). El uso de sistemas de comunicaciones ópticas como una media de transporte de señales inalámbricas en enlaces RoF reduce el cuello de botella entre los estándares de acceso inalámbrico y cableado en un dominio convergente óptico. Las redes de acceso ópticas están evolucionando con capacidades de hasta 10 Gb/s con el estándard 10GEPON, dejando un cuello de botella entre tecnologías de acceso inalámbrico y óptico. . Eso ha motivado gran esfuerzo de investigación en la generación y distribución de señales inalámbricas de alta capacidad (> 10 Gb/s) basada en RoF. En esta tesis se ha investigado el uso de técnicas fotónicas para la generación , distribución y demodulación de señales inalámbricas moduladas vectorialmente. Esta tesis está principalmente dedicada a la generación de señales inalámbricas espectralmente eficientes como la modulación de fase en cuadratura (QPSK) o modulación de amplitud cuadratura de multinivel (M-QAM). El trabajo presentado en esta tesis está clasificado en dos partes: la primera de ellas trata de las técnicas fotónicas que utilizan señales eléctricas coherente para la generación y demodulación de señales inalámbricas, mientras la segunda parte trata de usar señales ópticas incoherentes. En la primera parte de la tesis, están presentadas diferentes arquitecturas de sistemas y están analizadas numéricamente, y demostradas experimentalmente. Un nuevo concepto denominado "modulación vectorial fotónica" (PVM) es propuesto para la generación de señales inalámbricas con una modulación M-QAM. Basado en esta técnica se presenta la generación de señales de capacidad 10Gb/s con una modulación de QPSK y 16-QAM.Sambaraju -, R. (2010). Photonic Modulation and Demodulation techniques for Multi-Gb/s Millimetre wave Wireless Links [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/8857Palanci

    System-level design and RF front-end implementation for a 3-10ghz multiband-ofdm ultrawideband receiver and built-in testing techniques for analog and rf integrated circuits

    Get PDF
    This work consists of two main parts: a) Design of a 3-10GHz UltraWideBand (UWB) Receiver and b) Built-In Testing Techniques (BIT) for Analog and RF circuits. The MultiBand OFDM (MB-OFDM) proposal for UWB communications has received significant attention for the implementation of very high data rate (up to 480Mb/s) wireless devices. A wideband LNA with a tunable notch filter, a downconversion quadrature mixer, and the overall radio system-level design are proposed for an 11-band 3.4-10.3GHz direct conversion receiver for MB-OFDM UWB implemented in a 0.25mm BiCMOS process. The packaged IC includes an RF front-end with interference rejection at 5.25GHz, a frequency synthesizer generating 11 carrier tones in quadrature with fast hopping, and a linear phase baseband section with 42dB of gain programmability. The receiver IC mounted on a FR-4 substrate provides a maximum gain of 67-78dB and NF of 5-10dB across all bands while consuming 114mA from a 2.5V supply. Two BIT techniques for analog and RF circuits are developed. The goal is to reduce the test cost by reducing the use of analog instrumentation. An integrated frequency response characterization system with a digital interface is proposed to test the magnitude and phase responses at different nodes of an analog circuit. A complete prototype in CMOS 0.35mm technology employs only 0.3mm2 of area. Its operation is demonstrated by performing frequency response measurements in a range of 1 to 130MHz on 2 analog filters integrated on the same chip. A very compact CMOS RF RMS Detector and a methodology for its use in the built-in measurement of the gain and 1dB compression point of RF circuits are proposed to address the problem of on-chip testing at RF frequencies. The proposed device generates a DC voltage proportional to the RMS voltage amplitude of an RF signal. A design in CMOS 0.35mm technology presents and input capacitance <15fF and occupies and area of 0.03mm2. The application of these two techniques in combination with a loop-back test architecture significantly enhances the testability of a wireless transceiver system

    Portable Waveform Development for Software Defined Radios

    Get PDF
    This work focuses on the question: "How can we build waveforms that can be moved from one platform to another?\u27\u27 Therefore an approach based on the Model Driven Architecture was evaluated. Furthermore, a proof of concept is given with the port of a TETRA waveform from a USRP platform to an SFF SDR platform

    Adaptive Baseband Pro cessing and Configurable Hardware for Wireless Communication

    Get PDF
    The world of information is literally at one’s fingertips, allowing access to previously unimaginable amounts of data, thanks to advances in wireless communication. The growing demand for high speed data has necessitated theuse of wider bandwidths, and wireless technologies such as Multiple-InputMultiple-Output (MIMO) have been adopted to increase spectral efficiency.These advanced communication technologies require sophisticated signal processing, often leading to higher power consumption and reduced battery life.Therefore, increasing energy efficiency of baseband hardware for MIMO signal processing has become extremely vital. High Quality of Service (QoS)requirements invariably lead to a larger number of computations and a higherpower dissipation. However, recognizing the dynamic nature of the wirelesscommunication medium in which only some channel scenarios require complexsignal processing, and that not all situations call for high data rates, allowsthe use of an adaptive channel aware signal processing strategy to provide adesired QoS. Information such as interference conditions, coherence bandwidthand Signal to Noise Ratio (SNR) can be used to reduce algorithmic computations in favorable channels. Hardware circuits which run these algorithmsneed flexibility and easy reconfigurability to switch between multiple designsfor different parameters. These parameters can be used to tune the operations of different components in a receiver based on feedback from the digitalbaseband. This dissertation focuses on the optimization of digital basebandcircuitry of receivers which use feedback to trade power and performance. Aco-optimization approach, where designs are optimized starting from the algorithmic stage through the hardware architectural stage to the final circuitimplementation is adopted to realize energy efficient digital baseband hardwarefor mobile 4G devices. These concepts are also extended to the next generation5G systems where the energy efficiency of the base station is improved.This work includes six papers that examine digital circuits in MIMO wireless receivers. Several key blocks in these receiver include analog circuits thathave residual non-linearities, leading to signal intermodulation and distortion.Paper-I introduces a digital technique to detect such non-linearities and calibrate analog circuits to improve signal quality. The concept of a digital nonlinearity tuning system developed in Paper-I is implemented and demonstratedin hardware. The performance of this implementation is tested with an analogchannel select filter, and results are presented in Paper-II. MIMO systems suchas the ones used in 4G, may employ QR Decomposition (QRD) processors tosimplify the implementation of tree search based signal detectors. However,the small form factor of the mobile device increases spatial correlation, whichis detrimental to signal multiplexing. Consequently, a QRD processor capableof handling high spatial correlation is presented in Paper-III. The algorithm and hardware implementation are optimized for carrier aggregation, which increases requirements on signal processing throughput, leading to higher powerdissipation. Paper-IV presents a method to perform channel-aware processingwith a simple interpolation strategy to adaptively reduce QRD computationcount. Channel properties such as coherence bandwidth and SNR are used toreduce multiplications by 40% to 80%. These concepts are extended to usetime domain correlation properties, and a full QRD processor for 4G systemsfabricated in 28 nm FD-SOI technology is presented in Paper-V. The designis implemented with a configurable architecture and measurements show thatcircuit tuning results in a highly energy efficient processor, requiring 0.2 nJ to1.3 nJ for each QRD. Finally, these adaptive channel-aware signal processingconcepts are examined in the scope of the next generation of communicationsystems. Massive MIMO systems increase spectral efficiency by using a largenumber of antennas at the base station. Consequently, the signal processingat the base station has a high computational count. Paper-VI presents a configurable detection scheme which reduces this complexity by using techniquessuch as selective user detection and interpolation based signal processing. Hardware is optimized for resource sharing, resulting in a highly reconfigurable andenergy efficient uplink signal detector

    Vizor: Virtually zero margin adaptive rf for ultra low power wireless communication

    Get PDF
    Abstract 1 Modern wireless transceiver systems are often overdesigned to meet the requirements of low bit error rate values at high data rates under worst-case channel operating conditions (interference, noise, multi-path effects). This results in circuits being designed with &quot;sufficient&quot; margins leading to lower efficiency and high power consumption. In this paper, we develop an adaptive power management strategy for RF systems that optimally trades-off power vs. performance for the RF front-end to maintain operation at or below a specified maximum bit error rate (BER) across temporally changing operating conditions. As the communication channel degrades, more power is consumed by the RF front end and vice versa. Since the maximum bit-error rate specification is not violated, minimum voice or video quality through the wireless channel is always guaranteed
    corecore