16 research outputs found

    Tunable Versatile High Input Impedance Voltage-Mode Universal Biquadratic Filter Based on DDCCs

    Get PDF
    A high input impedance voltage-mode universal biquadratic filter with three input terminals and seven output terminals is presented. The proposed circuit uses three differential difference current conveyors (DDCCs), four resistors and two grounded capacitors. The proposed circuit can realize all the standard filter functions, namely, lowpass, bandpass, highpass, notch and allpass, simultaneously. The proposed circuit offers the features of high input impedance, using only grounded capacitors, and orthogonal controllability of resonance angular frequency and quality factor

    Electronically Tunable Resistorless Mixed Mode Biquad Filters

    Get PDF
    This paper presents a new realization of elec¬tronically tunable mixed mode (including transadmittance- and voltage-modes) biquad filter with single input, three outputs or three inputs, single output using voltage differ-encing transconductance amplifier (VDTA), a recently introduced active element. It can simultaneously realize standard filtering signals: low-pass, band-pass and high-pass or by selecting input terminals, it can realize all five different filtering signals: low-pass, band-pass, high-pass, band-stop and all-pass. The proposed filter circuit offers the following attractive feature: no requirement of invert-ing type input signal which is require no addition circuit, critical component matching conditions are not required in the design, the circuit parameters ω0 and Q can be set orthogonally or independently through adjusting the bias currents of the VDTAs, the proposed circuit employs two active and minimum numbers of passive components. Fur-thermore, this filter was investigated from the point of view of limited frequency range, stability conditions, effects of parasitic elements and effects of non-ideal and sensitivity. Thus, taking these effects and conditions into considera¬tion, working conditions and boundaries of this filter are determined. We also performed Monte Carlo, THD and noise analyses. Simulation results are given to confirm theoretical analyses

    Versatile Tunable Current-Mode Universal Biquadratic Filter Using MO-DVCCs and MOSFET-Based Electronic Resistors

    Get PDF
    This paper presents a versatile tunable current-mode universal biquadratic filter with four-input and three-output employing only two multioutput differential voltage current conveyors (MO-DVCCs), two grounded capacitors, and a well-known method for replacement of three grounded resistors by MOSFET-based electronic resistors. The proposed configuration exhibits high-output impedance which is important for easy cascading in the current-mode operations. The proposed circuit can be used as either a two-input three-output circuit or a three-input single-output circuit. In the operation of two-input three-output circuit, the bandpass, highpass, and bandreject filtering responses can be realized simultaneously while the allpass filtering response can be easily obtained by connecting appropriated output current directly without using additional stages. In the operation of three-input single-output circuit, all five generic filtering functions can be easily realized by selecting different three-input current signals. The filter permits orthogonal controllability of the quality factor and resonance angular frequency, and no inverting-type input current signals are imposed. All the passive and active sensitivities are low. Postlayout simulations were carried out to verify the functionality of the design

    High Input Impedance Voltage-Mode Biquad Filter Using VD-DIBAs

    Get PDF
    This paper deals with a single-input multiple-output biquadratic filter providing three functions (low-pass, high-pass and band-pass) based on voltage differencing differential input buffered amplifier (VD-DIBA). The quality factor and pole frequency can be electronically tuned via the bias current. The proposed circuit uses two VD-DIBAs and two grounded capacitors without any external resistors, which is suitable to further develop into an integrated circuit. Moreover, the circuit possesses high input impedance, providing easy voltage-mode cascading. It is shown that the filter structure can be easily extended to multi-input filter without any additional components, providing also all-pass and band-reject properties. The PSPICE simulation and experimental results are included, verifying the key characteristics of the proposed filter. The given results agree well with the theoretical presumptions

    DV-EXCCCII Based Resistor-Less Current-Mode Universal Biquadratic Filter

    Get PDF
    This study aims to present a new resistor-less current-mode multi-input single-output universal filter. The current-mode’s design approach is used to obtain the proposed circuit. This circuit employs a single differential voltage extra-X current controlled current conveyor (DV-EXCCCII) and two grounded capacitors. This multifunction filter circuit offers low-pass, high-pass, all-pass, band-pass, and band-reject filters at a single output terminal without passive component matching constraints. The same circuit topology can obtain all second-order filter functions with different input conditions. The proposed circuit design is electronically adjustable with the bias current of DV-EXCCCII. Because of its high output impedance, this arrangement is suitable for cascading other current-mode circuits. The proposed circuit is simulated by Cadence Spectre with 0.18 µm UMC CMOS technology process parameters at ± 0.9 V supply voltages. The simulation results agree well with the theoretical concept of the proposed circuit

    Universal Pseudo-Differential Filter Using DDCC and DVCCs

    Get PDF
    In the paper, a universal preudo-differential second-order filter operating in voltage mode, where both input and output are differential, is presented. The circuit is formed by one differential difference current conveyor (DDCC), two differential voltage current conveyors (DVCCs), and five passive elements. The filter is characterized by high input impedance, minimum number of passive elements that are all grounded, and high common-mode rejection ratio (CMRR). The proposed filter structure is able to realize all five standard frequency filter responses. Non-ideal analysis has been performed by considering the real parasitic parameters of the active elements. The optimization of passive element values has been done in terms of minimal shift of the pole-frequency and to obtain the maximum stop-band attenuation of the high-pass filter response. Functionality is verified by simulations and experimental measurements using readily available integrated circuit UCC-N1B 0520

    A new wideband electronically tunable grounded resistor employing only three MOS transistors

    Get PDF
    In this paper, a new wideband electronically tunable grounded resistor, namely a grounded voltage controlled resistor (GVCR) including only three MOS transistors, is suggested. The proposed GVCR, without requiring any additional bias currents and voltages, has only one control voltage. Linearity analysis for the proposed GVCR is given. A new second-order multifunctional filter using two differential voltage current conveyors is also included as an application example. Some postlayout simulation results with SPICE are included to show the performance, workability, and effectiveness. © 2016 Tübitak

    One-Input Three-Output Current-Mode Universal Filter Using Translinear Current Conveyors

    Get PDF
    This paper presents a new current-mode universal filter with one-input three-output employing three translinear current conveyors and two grounded capacitors. The proposed filter provides low-pass, band-pass, high-pass current response with high output impedance output which can be directly connected for current-mode circuit. The band-pass and all-pass filters can also be obtained. The parameters wo and Q can be controlled separately and electronically by the bias currents of current conveyors. For realizing all filtering functions, no passive and active matching conditions are required. The active and passive sensitivities are low. The characteristic of the proposed circuit can be confirmed by SPICE simulations

    Unconventional Circuit Elements for Ladder Filter Design

    Get PDF
    Kmitočtové filtry jsou lineární elektrické obvody, které jsou využívány v různých oblastech elektroniky. Současně tvoří základní stavební bloky pro analogové zpracování signálů. V poslední dekádě bylo zavedeno množství aktivních stavebních bloků pro analogové zpracování signálů. Stále však existuje potřeba vývoje nových aktivních součástek, které by poskytovaly nové možnosti a lepší parametry. V práci jsou diskutovány různé aspekty obvodů pracujících v napěťovém, proudovém a smíšném módu. Práce reaguje na dnešní potřebu nízkovýkonových a nízkonapěťových aplikací pro přenosné přístroje a mobilní komunikační systémy a na problémy jejich návrhu. Potřeba těchto výkonných nízkonapěťových zařízení je výzvou návrhářů k hledání nových obvodových topologií a nových nízkonapěťových technik. V práci je popsána řada aktivních prvků, jako například operační transkonduktanční zesilovač (OTA), proudový konvejor II. generace (CCII) a CDTA (Current Differencing Transconductance Amplifier). Dále jsou navrženy nové prvky, jako jsou VDTA (Voltage Differencing Transconductance Amplifier) a VDVTA (Voltage Differencing Voltage Transconductance Amplifier). Všechny tyto prvky byly rovněž implementovány pomocí "bulk-driven" techniky CMOS s cílem realizace nízkonapěťových aplikací. Tato práce je rovněž zaměřena na náhrady klasických induktorů syntetickými induktory v pasivních LC příčkových filtrech. Tyto náhrady pak mohou vést k syntéze aktivních filtrů se zajímavými vlastnostmi.Frequency filters are linear electric circuits that are used in wide area of electronics. They are also the basic building blocks in analogue signal processing. In the last decade, a huge number of active building blocks for analogue signal processing was introduced. However, there is still the need to develop new active elements that offer new possibilities and better parameters. The current-, voltage-, or mixed-mode analog circuits and their various aspects are discussed in the thesis. This work reflects the trend of low-power (LP) low-voltage (LV) circuits for portable electronic and mobile communication systems and the problems of their design. The need for high-performance LV circuits encourages the analog designers to look for new circuit architectures and new LV techniques. This thesis presents various active elements such as Operational Transconductance Amplifier (OTA), Current Conveyor of Second Generation (CCII), and Current Differencing Transconductance Amplifier (CDTA), and introduces novel ones, such as Voltage Differencing Transconductance Amplifier (VDTA) and Voltage Differencing Voltage Transconductance Amplifier (VDVTA). All the above active elements were also designed in CMOS bulk-driven technology for LP LV applications. This thesis is also focused on replacement of conventional inductors by synthetic ones in passive LC ladder filters. These replacements can lead to the synthesis of active filters with interesting parameters.
    corecore