63 research outputs found

    Fabrication and characterisation of tellurite planar waveguides

    Get PDF
    Tellurite glasses, which contain Tellurium dioxide as the main component, have some remarkable optical properties which are well recognised and exploited in the bulk optics and fibre fields. They include a high acousto-optic figure of merit, wide mid infrared transparency, the highest optical nonlinearity amongst oxides, and excellent rare earth hosting, etc. Despite these attractive properties, until now, no one has succeeded in fabricating low loss planar waveguides in these materials. This work develops high quality optical planar waveguides in Tellurium dioxide for the first time. The project investigates the materials science for optical Tellurium dioxide films and discovers an appropriate waveguide fabrication method. The thin films have been fabricated by reactive radio frequency magnetron sputtering using a Tellurium target in an oxygen and argon atmosphere. Propagation losses at 1550nm in the planar films are 0.1dB/cm or lower in stoichiometric composition. The properties of films have been also found to be stable with thermal annealing up to 300 degree Celsius. Plasma etching of tellurite glasses has been systematically studied. High quality etching of Tellurium dioxide and chalcogenide glass films has been demonstrated with a Methane/Hydrogen/Argon gas mixture. As a result, a fabrication recipe which produces low loss (0.1dB/cm) planar waveguides has been discovered. The nonlinear coefficient of the sputtered TeO2 has been characterised by self-phase modulation (SPM) experiments and the second order nonlinear coefficient has been measured to be around 25 times that of silica. Significant signal conversion, -4dB, has achieved with large bandwidth of 30nm in the four-wave mixing (FWM) experiment pumped at 1550nm in a slightly normal dispersion waveguide. Erbium doped Tellurium oxide thin films have also been fabricated by co-sputtering of Erbium and Tellurium targets into an Oxygen and Argon atmosphere. The obtained films have been found to have good properties for Erbium doped waveguide amplifiers. The Erbium concentration can be controlled within the range of interest with Erbium/Tellurium ratios ranging from 0.1% to 3% or more. The 1.5 micrometre photoluminescence properties of the films are excellent with effective bandwidth of more that 60nm and intrinsic lifetime of order of 3ms. Despite the fact that there was OH contamination in the films, single mode Erbium doped waveguide amplifiers with high internal gain have been successfully obtained. The 1480nm pumped amplifier achieved internal gain from below 1520nm to beyond 1600nm. The peak gain of 2.8dB/cm and 40nm 3dB gain bandwidth have been accomplished. These results are a major stepping stone towards ""system-on-chip"" optical applications for telecom and mid infrared optics given the multifunctional nature of tellurite materials. -- provided by Candidate

    NOVEL COMPACT NARROW-LINEWIDTH MID-INFRARED LASERS FOR SENSING APPLICATIONS

    Get PDF
    The mid-infrared (2-14 μm) spectral region contains the strong absorption lines of many important molecular species, which make this region crucial for several well-know applications such as spectroscopy, chemical and biochemical sensing, security, and industrial monitoring. To fully exploit this region through absorption spectroscopic techniques, compact and low-cost narrow-linewidth (NLW) mid-infrared (MIR) laser sources are of primary importance. This thesis is focused on three novel compact NLW MIR lasers: demonstration and characterization of a new glass-based spherical microlaser, investigation of the performance of a novel fiber laser, and the design of a monolithic laser on a silicon chip. Starting with fabrication of spherical microcavities based on MIR transparent materials, I showed the feasibility of achieving quality factors of more than 10 million in whispering- gallery mode (WGM) microresonators made of different types of fluoride glasses. Next using Erbium doped ZBLAN glass spherical microresonators, I demonstrated a new ultra- low threshold NLW MIR microlaser. In particular, all aspects of this room temperature continuous-wave (CW) microlaser with a wavelength of 2.71 μm are carefully characterized and studied and the origin of the measured mode structure and polarization is described using a simple analysis. To amplify the output power of this laser, I designed and fabricated a MIR fiber amplifier with a record gain of about 30 dB at 2.71 μm that facilitated the characterization process and boosted the MIR power level to usable level while preserving the laser linewidth. To demonstrate the application of MIR microresonators and microlasers, I studied intracavity absorption spectroscopy based on active and passive high quality WGM MIR microlasers and microresonators. I also estimated the sensitivity and detection limit of gas sensors based on these devices. The outcome of my analysis shows that ppm level sensitivity should be achievable using both active and passive microresonators. Next, I modeled the performance of two newly proposed configurations for NLW MIR generation based on stimulated Raman scattering. First, I studied a new family of Raman fiber lasers that are capable of generating any NLW MIR line in the 2.5-9.5 μm spectral region. I demonstrated the feasibility of this MIR laser family, calculated the threshold conditions, identified the condition for its single-mode operation, and laid the foundation for the first experimental demonstration of such lasers. Finally, I explored the performance of silicon-based on-chip Raman lasers and the parameters that have prevented expanding their wavelength to MIR range. Using the outcomes of this study, I proposed and then analyzed a new architecture for on-chip silicon Raman lasers capable of generating single NLW lines around 3.2 μm with sub-mW threshold pump power

    Femtosecond Laser Written Volumetric Diffractive Optical Elements And Their Applications

    Get PDF
    Since the first demonstration of femtosecond laser written waveguides in 1996, femtosecond laser direct writing (FLDW) has been providing a versatile means to fabricate embedded 3-D microstructures in transparent materials. The key mechanisms are nonlinear absorption processes that occur when a laser beam is tightly focused into a material and the intensity of the focused beam reaches the range creating enough free electrons to induce structural modification. One of the most useful features that can be exploited in fabricating photonic structures is the refractive index change which results from the localized energy deposition. The laser processing system for FLDW can be realized as a compact, desktop station, implemented by a laser source, a 3-D stage and focusing optics. Thus, FLDW can be readily adopted for the fabrication of the photonic devices. For instance, it has been widely employed in various areas of photonic device fabrication such as active and passive waveguides, couplers, gratings, opto-fluidics and similar applications. This dissertation describes the use of FLDW towards the fabrication of custom designed diffractive optical elements (DOE’s). These are important micro-optical elements that are building blocks in integrated optical devices including on-chip sensors and systems. The fabrication and characterization of laser direct written DOEs in different glass materials is investigated. The design and performance of a range of DOE’s is described, especially, laser-written embedded Fresnel zone plates and linear gratings. Their diffractive efficiency as a function of the fabrication parameters is discussed and an optimized fabrication process is realized. The potential of the micro-DOEs and their integration shown in this dissertation will impact on the fabrication of future on-chip devices involving customized iv DOEs that will serve great flexibility and multi-functional capability on sensing, imaging and beam shaping

    Nonlinear Optics in Chalcogenide and Tellurite Microspheres for the Generation of Mid-Infrared Frequencies

    Get PDF
    Le développement de sources optiques émettant au-delà des bandes de télécommunication jusqu’à l’infrarouge moyen est grandissant. Des sources nouvelles et améliorées émettant à des longueurs d’onde allant de 2 μm à 12 μm sont régulièrement rapportées dans la communauté scientifique et quelques sources sont déjà disponibles sur le marché. Divers domaines profitent de ces développements dont l’imagerie, les télécommunications, le traitement des matériaux et l’analyse moléculaire pour n’en nommer que quelques-uns. Parmi ces sources,les lasers basés sur les microcavités à modes de galerie sont de plus en plus présents puisque beaucoup d’efforts sont déployés au transfert de leurs propriétés uniques du proche infrarouge à l’infrarouge moyen. En plus de leurs dimensions micrométriques, les microcavités à modes de galerie sont naturellement adaptées à la génération non linéaire de signaux optiques : elles possèdent de grands facteurs de qualité et de petits volumes modaux. Les processus non linéaires de diffusion Raman stimulée et en cascade sont attrayants puisqu’ils ne requièrent aucune condition de dispersion particulière. De plus, ces processus sont observables sur toute la fenêtre de transmission du matériau. La silice qui est le matériel de choix typiquement utilisé pour la transmission de signal dans le proche infrarouge devient opaque aux longueurs d’onde excédant 2 μm. Pour cette raison, on tirera profit de matériaux moins conventionnels mais transparents dans l’infrarouge moyen, tels que les verres de chalcogénure et de tellure. Parmi les microcavités à modes de galerie basées sur les verres de chalcogénure qui ont été rapportées, aucune démonstration de génération non linéaire n’a été faite. Cela s’explique par des pertes optiques trop élevées qui limitent les puissances de seuil aux dizaines de milliwatts, loin des puissances de seuil de quelques microwatts observées dans les microcavités en silice dans le proche infrarouge. La première contribution de cette thèse répond à ce problème par la fabrication de microsphères de haute qualité en As2S3. Reconnus pour leur transparence entre les longueurs d’onde de 1 μm à 6 μm, les verres en As2S3 peuvent être produits avec une grande pureté et possèdent un gain Raman élevé comparé à la silice. Les microsphères en As2S3 sont produites à partir de fibres optiques de grande pureté et elles démontrent des pertes optiques similaires à celles des fibres. Grâce aux procédés d’usinage par laser, les facteurs de qualité optique sont deux ordres de grandeur supérieurs aux valeurs précédemment rapportées. Les microsphères peuvent être fabriquées avec des diamètres variant de 20 μm à 400 μm. Enfin, leur qualité est conservée par un procédé d’encapsulation.----------Abstract In the recent years, the development of optical sources emitting outside the standard telecommunication bands and in the mid-infrared (mid-IR) region is thriving. New and improved sources with wavelengths spanning from 2 μm to 12 μm are regularly reported in the research community and various sources are already available on the market. Diverse domains including imagery, communication, material processing, and molecular analysis are taking advantage of these sources. Among these, micron-size lasers based on whispering gallery modes (WGM) microcavities are gradually entering the race as more effort is invested to transfer their unique properties from near-infrared to mid-IR regions. Along their compactness,WGM microcavities are naturally suitable for nonlinear signal generation: they possess relatively large Q-factors and small mode volumes. Stimulated and cascaded Raman scattering processes are especially attractive for signal generation as they require no particular dispersion condition. Furthermore, these processes can be observed across the entire transparency window of the host material. Typical near-IR materials such as silica have to be replaced by unconventional ones such as chalcogenide and tellurite glasses. All previously reported WGM microcavities based on chalcogenide and tellurite glasses failed to demonstrate nonlinear interaction. They suffered from large optical losses that push threshold power levels to tens of milliwatts, far from the μW level usually observed in silica microcavities at near-IR wavelengths. The first contribution of this thesis is therefore to solve this issue by fabricating low loss As2S3 WGM microcavities. Known for its 1−6 μm transparency window, As2S3 glass can be produced with high purity and exhibits a large Raman gain compared to silica. Made from high purity optical fibers, As2S3 microspheres demonstrated loss levels similar to the optical fiber attenuation. Thanks to a fabrication technique based on laser shaping, the measured optical Q-factors exceed previously reported values by two orders of magnitude in As2S3. Microspheres can be produced with diameters varying between 20 μm and 400 μm. Their quality is maintained using an encapsulation method. The packaged device additionally includes a tapered optical fiber to couple light in and out of the microcavity. The second thesis contribution is the demonstration of stimulated Raman scattering in As2S3 microspheres. Threshold coupled pump powers of ~ 13 μW with internal power conversion efficiency of 10 % were observed for pump and signal wavelengths of 1550 nm and 1640 nm

    Hybrid photonic-crystal fiber

    Get PDF
    This article offers an extensive survey of results obtained using hybrid photonic-crystal fibers (PCFs) which constitute one of the most active research fields in contemporary fiber optics. The ability to integrate novel and functional materials in solid-and hollow-core PCFs through various postprocessing methods has enabled new directions toward understanding fundamental linear and nonlinear phenomena as well as novel application aspects, within the fields of optoelectronics, material and laser science, remote sensing, and spectroscopy. Here the recent progress in the field of hybrid PCFs is reviewed from scientific and technological perspectives, focusing on how different fluids, solids, and gases can significantly extend the functionality of PCFs. The first part of this review discusses the efforts to develop tunable linear and nonlinear fiber-optic devices using PCFs infiltrated with various liquids, glasses, semiconductors, and metals. The second part concentrates on recent and state-of-the-art advances in the field of gas-filled hollow-core PCFs. Extreme ultrafast gas-based nonlinear optics toward light generation in the extreme wavelength regions of vacuum ultraviolet, pulse propagation, and compression dynamics in both atomic and molecular gases, and novel soliton-plasma interactions are reviewed. A discussion of future prospects and directions is also included

    Near- and mid-infrared supercontinuum sources with MHz repetition rates

    Get PDF

    Mid-infrared frequency combs

    Full text link
    Laser frequency combs are coherent light sources that emit a broad spectrum consisting of discrete, evenly spaced narrow lines, each having an absolute frequency measurable within the accuracy of an atomic clock. Their development, a decade ago, in the near-infrared and visible domains has revolutionized frequency metrology with numerous windfalls into other fields such as astronomy or attosecond science. Extension of frequency comb techniques to the mid-infrared spectral region is now under exploration. Versatile mid-infrared frequency comb generators, based on novel laser gain media, nonlinear frequency conversion or microresonators, promise to significantly expand the tree of applications of frequency combs. In particular, novel approaches to molecular spectroscopy in the fingerprint region, with dramatically improved precision, sensitivity, recording time and/or spectral bandwidth may spark off new discoveries in the various fields relevant to molecular sciences

    Glassy Materials Based Microdevices

    Get PDF
    Microtechnology has changed our world since the last century, when silicon microelectronics revolutionized sensor, control and communication areas, with applications extending from domotics to automotive, and from security to biomedicine. The present century, however, is also seeing an accelerating pace of innovation in glassy materials; as an example, glass-ceramics, which successfully combine the properties of an amorphous matrix with those of micro- or nano-crystals, offer a very high flexibility of design to chemists, physicists and engineers, who can conceive and implement advanced microdevices. In a very similar way, the synthesis of glassy polymers in a very wide range of chemical structures offers unprecedented potential of applications. The contemporary availability of microfabrication technologies, such as direct laser writing or 3D printing, which add to the most common processes (deposition, lithography and etching), facilitates the development of novel or advanced microdevices based on glassy materials. Biochemical and biomedical sensors, especially with the lab-on-a-chip target, are one of the most evident proofs of the success of this material platform. Other applications have also emerged in environment, food, and chemical industries. The present Special Issue of Micromachines aims at reviewing the current state-of-the-art and presenting perspectives of further development. Contributions related to the technologies, glassy materials, design and fabrication processes, characterization, and, eventually, applications are welcome
    • …
    corecore