1,978 research outputs found

    Active tuning of photonic device characteristics during operation by ferroelectric domain switching

    Get PDF
    Ferroelectrics have many unusual properties. Two properties that are often exploited are first, their complex, nonlinear optical response and second, their strong nonlinear coupling between electromagnetic and mechanical fields through the domain patterns or microstructure. The former has led to the use of ferroelectrics in optical devices and the latter is used in ferroelectric sensors and actuators. We show the feasibility of using these properties together in nanoscale photonic devices. The electromechanical coupling allows us to change the domain patterns or microstructure. This in turn changes the optical characteristics. Together, these could provide photonic devices with tunable properties. We present calculations for two model devices. First, in a photonic crystal consisting of a triangular lattice of air holes in barium titanate, we find the change in the band structure when the domains are switched. The change is significant compared to the frequency spread of currently available high-quality light sources and may provide a strategy for optical switching. Second, we show that periodically poled 90Β° domain patterns, despite their complex geometry, do not cause dispersion or have band gaps. Hence, they may provide an alternative to the antiparallel domains that are usually used in quasiphase matching and allow for tunable higher-harmonic generation

    Frequency tunability of solid-core photonic crystal fibers filled with nanoparticle-doped liquid crystals

    Get PDF
    We infiltrate liquid crystals doped with BaTiO3 nanoparticles in a photonic crystal fiber and compare the measured transmission spectrum with the one achieved without dopant. New interesting features, such as frequency modulation response of the device and a transmission spectrum with tunable attenuation on the short wavelength side of the widest bandgap, suggest a potential application of this device as a tunable all-in-fiber gain equalization filter with an adjustable slope. The tunability of the device is achieved by varying the amplitude and the frequency of the applied external electric field. The threshold voltage for doped and undoped liquid crystals in a silica capillary and in a glass cell are also measured as a function of the frequency of the external electric field and the achieved results are compared

    Liquid-crystal photonic applications

    Get PDF

    Ferroelectric Based Photonic Crystal Cavity by Liquid Crystal Infiltration

    Get PDF
    Cataloged from PDF version of article.A novel type of two-dimensional photonic crystal is investigated for it optical properties as a core-shell-type ferroelectric nanorod infiltrated with nematic liquid crystals. Using the plane wave expansion method and finite-difference time-domain method, the photonic crystal structure, which is composed of a photonic crystal in a core-shell-type ferroelectric nanorod, is designed for the square lattice and the hexagonal lattice. It has been used 5CB as a photonic crystal core, and LiNbO3 as a ferroelectric material. The photonic crystal with a core-shell-type LiNbO3 nanorod infiltrated with nematic liquid crystals is compared with the photonic crystal with solid LiNbO3 rods and the photonic crystal with hollow LiNbO3 rods

    Liquid Crystals on Ferroelectric Thin Films

    Get PDF
    Barium titanate (BTO) and lead zirconate titanate (PZT) are two of the most common ferroelectric materials used in applications. These two materials offer excellent dielectric, piezo-electric, electro-optic and pyro-electric properties. The excellent electro-optic properties of our PZT and BTO deposited thin films may lead to cheap and versatile ultra-fast electro-optic modulators on existing photonic platforms [1], such as the Si or the SiN nanophotonic platform. In this work however, we exploit the extremely high dielectric permittivity of PZT (in the order of 500 to 1000). The permittivity is quasi independent of the underlying substrate material (glass, glass + ITO, glass + Pt, Si, etc.). Liquid crystals exhibit electro-optic effects that are an order of magnitude larger compared to PZT, which makes them ideal materials for use in beam steering applications of focus tunable lenses. In these applications the liquid crystal imposes a spatially varying optical path length to light passing through the liquid crystal layer. By working with a number of separately addressable electrodes the optical path length variation can be accurately controlled. Using multi-electrode designs for example, tunable lenses with high optical quality have been demonstrated. One major problem of multi-electrode designs is the appearance of fringe fields which leads to unwanted behavior of the liquid crystal and may eventually lead to the formation of disclination lines which reduces the optical performance drastically. Using a PZT thin film, we demonstrate that the fringe fields are eliminated and that designs with fewer separately addressable electrodes are necessary. Tunable lenses with a liquid crystal layer integrated on top of a PZT layer are demonstrated [2]. Next to the experimental demonstration we provide numerical simulations of the effect of the high permittivity layer on the liquid crystal. [1] J.P. George, et al. Lanthanide-Assisted Deposition of Strongly Electro-optic PZT Thin Films on Silicon: Toward Integrated Active Nanophotonic Devices. ACS Appl. Mater. Inter. 7 13350-9 (2015) [2] O. Willekens, et al., Ferroelectric thin films with liquid crystal for gradient index applications, Optics Express (submitted

    ЀотоориСнтация ΠΈ Ρ„ΠΎΡ‚ΠΎΠΏΠ°Ρ‚Ρ‚Π΅Ρ€Π½ΠΈΠ½Π³: Новая ТидкокристалличСская тСхнология для дисплССв ΠΈ Ρ„ΠΎΡ‚ΠΎΠ½ΠΈΠΊΠΈ

    Get PDF
    Objectives. Since the end of the 20th century, liquid crystals have taken a leading position as a working material for the display industry. In particular, this is due to the advances in the control of surface orientation in thin layers of liquid crystals, which is necessary for setting the initial orientation of the layer structure in the absence of an electric field. The operation of most liquid crystal displays is based on electro-optical effects, arising from the changes in the initial orientation of the layers when the electric field is turned on, and the relaxation of the orientation structure under the action of surfaces after the electric field is turned off. In this regard, the high quality of surface orientation directly affects the technical characteristics of liquid crystal displays. The traditional technology of rubbing substrates, currently used in the display industry, has several disadvantages associated with the formation of a static charge on the substrates and surface contamination with microparticles. This review discusses an alternative photoalignment technology for liquid crystals on the surface, using materials sensitive to polarization of electromagnetic irradiation. Also, this review describes various applications of photosensitive azo dyes as photo-oriented materials. Results. The alternative photoalignment technology, which employs materials sensitive to electromagnetic polarization, allows to create the orientation of liquid crystals on the surface without mechanical impact and to control the surface anchoring force of a liquid crystal. This provides the benefits of using the photoalignment technology in the display industry and photonicsβ€”where the use of the rubbing technology is extremely difficult. The optical image rewriting mechanism is discussed, using electronic paper with photo-inert and photoaligned surfaces as an example. Further, different ways of using the photoalignment technology in liquid crystal photonics devices that control light beams are described. In particular, we consider switches, controllers and polarization rotators, optical attenuators, switchable diffraction gratings, polarization image analyzers, liquid crystal lenses, and ferroelectric liquid crystal displays with increased operation speed. Conclusions. The liquid crystal photoalignment and photopatterning technology is a promising tool for new display and photonics applications. It can be used for light polarization rotation; voltage controllable diffraction; fast switching of the liquid crystal refractive index; alignment of liquid crystals in super-thin photonic holes, curved and 3D surfaces; and many more applications.Π¦Π΅Π»ΠΈ. Π‘ ΠΊΠΎΠ½Ρ†Π° XX Π²Π΅ΠΊΠ° ΠΆΠΈΠ΄ΠΊΠΈΠ΅ кристаллы Π·Π°Π½ΠΈΠΌΠ°ΡŽΡ‚ Π»ΠΈΠ΄ΠΈΡ€ΡƒΡŽΡ‰Π΅Π΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ срСди Ρ€Π°Π±ΠΎΡ‡ΠΈΡ… ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ² для дисплСйной индустрии. Π’ частности, это стало Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ‹ΠΌ благодаря достиТСниям Π² области управлСния повСрхностной ΠΎΡ€ΠΈΠ΅Π½Ρ‚Π°Ρ†ΠΈΠ΅ΠΉ Π² Ρ‚ΠΎΠ½ΠΊΠΈΡ… слоях ΠΆΠΈΠ΄ΠΊΠΈΡ… кристаллов, Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎΠΉ для задания исходной ΠΎΡ€ΠΈΠ΅Π½Ρ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΉ структуры слоя Π² отсутствиС элСктричСского поля. Π Π°Π±ΠΎΡ‚Π° Π±ΠΎΠ»ΡŒΡˆΠΈΠ½ΡΡ‚Π²Π° ТидкокристалличСских дисплССв основана Π½Π° элСктрооптичСских эффСктах, Π²ΠΎΠ·Π½ΠΈΠΊΠ°ΡŽΡ‰ΠΈΡ… Π·Π° счСт измСнСния исходной ΠΎΡ€ΠΈΠ΅Π½Ρ‚Π°Ρ†ΠΈΠΈ слоСв ΠΏΡ€ΠΈ Π²ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠΈ элСктричСского поля ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠΉ рСлаксации ΠΎΡ€ΠΈΠ΅Π½Ρ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΉ структуры ΠΏΠΎΠ΄ дСйствиСм повСрхностСй послС Π²Ρ‹ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΡ элСктричСского поля. По этой ΠΏΡ€ΠΈΡ‡ΠΈΠ½Π΅ высокоС качСство повСрхностной ΠΎΡ€ΠΈΠ΅Π½Ρ‚Π°Ρ†ΠΈΠΈ Π½Π°ΠΏΡ€ΡΠΌΡƒΡŽ влияСт Π½Π° тСхничСскиС характСристики ТидкокристалличСских дисплССв. Π˜ΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΠ°Ρ Π² настоящСС врСмя Π² дисплСйной индустрии традиционная Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ натирания ΠΏΠΎΠ΄Π»ΠΎΠΆΠ΅ΠΊ ΠΈΠΌΠ΅Π΅Ρ‚ ряд нСдостатков, связанных с ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Π½Π° ΠΏΠΎΠ΄Π»ΠΎΠΆΠΊΠ°Ρ… статичСского заряда ΠΈ загрязнСниСм повСрхности микрочастицами. Π’ Π΄Π°Π½Π½ΠΎΠΌ ΠΎΠ±Π·ΠΎΡ€Π΅ рассмотрСна Π°Π»ΡŒΡ‚Π΅Ρ€Π½Π°Ρ‚ΠΈΠ²Π½Π°Ρ тСхнология Ρ„ΠΎΡ‚ΠΎΠΎΡ€ΠΈΠ΅Π½Ρ‚Π°Ρ†ΠΈΠΈ ΠΆΠΈΠ΄ΠΊΠΈΡ… кристаллов Π½Π° повСрхности с использованиСм ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ², Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΊ поляризации элСктромагнитного излучСния. Π’Π°ΠΊΠΆΠ΅ описаны Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Π΅ прилоТСния с использованиСм Ρ„ΠΎΡ‚ΠΎΡ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… азокраситСлСй Π² качСствС Ρ„ΠΎΡ‚ΠΎΠΎΡ€ΠΈΠ΅Π½Ρ‚ΠΈΡ€ΡƒΠ΅ΠΌΡ‹Ρ… ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ². Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. ΠΠ»ΡŒΡ‚Π΅Ρ€Π½Π°Ρ‚ΠΈΠ²Π½Π°Ρ тСхнология Ρ„ΠΎΡ‚ΠΎΠΎΡ€ΠΈΠ΅Π½Ρ‚Π°Ρ†ΠΈΠΈ позволяСт ΡΠΎΠ·Π΄Π°Π²Π°Ρ‚ΡŒ ΠΎΡ€ΠΈΠ΅Π½Ρ‚Π°Ρ†ΠΈΡŽ ΠΆΠΈΠ΄ΠΊΠΈΡ… кристаллов Π½Π° повСрхности Π±Π΅Π· мСханичСского воздСйствия, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ силу сцСплСния ΠΆΠΈΠ΄ΠΊΠΎΠ³ΠΎ кристалла с ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒΡŽ ΠΏΠΎΠ΄Π»ΠΎΠΆΠ΅ΠΊ. Π­Ρ‚ΠΎ обСспСчиваСт прСимущСство использования Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ Ρ„ΠΎΡ‚ΠΎΠΎΡ€ΠΈΠ΅Π½Ρ‚Π°Ρ†ΠΈΠΈ Π² дисплСйной индустрии ΠΈ Π² Ρ„ΠΎΡ‚ΠΎΠ½ΠΈΠΊΠ΅, Π³Π΄Π΅ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ натирания ΠΊΡ€Π°ΠΉΠ½Π΅ Π·Π°Ρ‚Ρ€ΡƒΠ΄Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ. На ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π΅ элСктронной Π±ΡƒΠΌΠ°Π³ΠΈ с Ρ„ΠΎΡ‚ΠΎΠΈΠ½Π΅Ρ€Ρ‚Π½ΠΎΠΉ ΠΈ Ρ„ΠΎΡ‚ΠΎΡ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ повСрхностями рассмотрСн ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌ оптичСской пСрСзаписи изобраТСния. ΠžΠΏΠΈΡΠ°Π½Ρ‹ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Π΅ Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Ρ‹ использования Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ Ρ„ΠΎΡ‚ΠΎΠΎΡ€ΠΈΠ΅Π½Ρ‚Π°Ρ†ΠΈΠΈ Π² ТидкокристалличСских устройствах Ρ„ΠΎΡ‚ΠΎΠ½ΠΈΠΊΠΈ, ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΠ²Π°ΡŽΡ‰ΠΈΡ… ΡƒΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ свСтовыми ΠΏΡƒΡ‡ΠΊΠ°ΠΌΠΈ. Π’ частности, рассмотрСны ΠΏΠ΅Ρ€Π΅ΠΊΠ»ΡŽΡ‡Π°Ρ‚Π΅Π»ΠΈ, ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»Π»Π΅Ρ€Ρ‹ ΠΈ Π²Ρ€Π°Ρ‰Π°Ρ‚Π΅Π»ΠΈ поляризации, оптичСскиС Π°Ρ‚Ρ‚Π΅Π½ΡŽΠ°Ρ‚ΠΎΡ€Ρ‹, ΠΏΠ΅Ρ€Π΅ΠΊΠ»ΡŽΡ‡Π°Π΅ΠΌΡ‹Π΅ Π΄ΠΈΡ„Ρ€Π°ΠΊΡ†ΠΈΠΎΠ½Π½Ρ‹Π΅ Ρ€Π΅ΡˆΠ΅Ρ‚ΠΊΠΈ, поляризационныС Π°Π½Π°Π»ΠΈΠ·Π°Ρ‚ΠΎΡ€Ρ‹ изобраТСния, ТидкокристалличСскиС Π»ΠΈΠ½Π·Ρ‹, Π° Ρ‚Π°ΠΊΠΆΠ΅ фСрроэлСктричСскиС ТидкокристалличСскиС дисплСи с ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½Π½Ρ‹ΠΌ быстродСйствиСм. Π’Ρ‹Π²ΠΎΠ΄Ρ‹. ВСхнология Ρ„ΠΎΡ‚ΠΎΠΎΡ€ΠΈΠ΅Π½Ρ‚Π°Ρ†ΠΈΠΈ ΠΈ Ρ„ΠΎΡ‚ΠΎΠΏΠ°Ρ‚Ρ‚Π΅Ρ€Π½ΠΈΠ½Π³Π° ΠΆΠΈΠ΄ΠΊΠΈΡ… кристаллов являСтся ΠΌΠ½ΠΎΠ³ΠΎΠΎΠ±Π΅Ρ‰Π°ΡŽΡ‰Π΅ΠΉ для Π½ΠΎΠ²Ρ‹Ρ… ΠΏΡ€ΠΈΠ»ΠΎΠΆΠ΅Π½ΠΈΠΉ Π² области дисплССв ΠΈ Ρ„ΠΎΡ‚ΠΎΠ½ΠΈΠΊΠΈ. ВСхнология ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ использована для вращСния поляризации свСта; Π΄ΠΈΡ„Ρ€Π°ΠΊΡ†ΠΈΠΈ, управляСмой напряТСниСм; быстрого ΠΏΠ΅Ρ€Π΅ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΡ показатСля прСломлСния ΠΆΠΈΠ΄ΠΊΠΎΠ³ΠΎ кристалла; ΠΎΡ€ΠΈΠ΅Π½Ρ‚Π°Ρ†ΠΈΠΈ ΠΆΠΈΠ΄ΠΊΠΈΡ… кристаллов Π² супСртонких Ρ„ΠΎΡ‚ΠΎΠ½Π½Ρ‹Ρ… Π΄Ρ‹Ρ€Π°Ρ…, Π½Π° искривлСнных ΠΈ 3D повСрхностях; ΠΈ ΠΌΠ½ΠΎΠ³ΠΎΠ³ΠΎ Π΄Ρ€ΡƒΠ³ΠΎΠ³ΠΎ.

    High frequency meta-ferroelectrics by inverse design

    Get PDF
    • …
    corecore