73 research outputs found

    A novel triangular wave quadrature oscillator without passive components for sinusoidal pulse width modulation DC-AC power conversion

    Get PDF
    In this study, a low-cost quadrature triangle oscillator using a voltage-controlled closed-loop dual operational amplifier (Op-Amp) architecture is proposed. Unlike other typical designs, this oscillator does not require any passive components. The use of an Op-Amp-based circuit is attractive for a triangle oscillator because it is more cost-effective than a microcontroller-based solution. This is especially true for sinusoidal pulse width modulation (SPWM) DC-AC power conversion applications. The slew-rate restriction of an Op-Amp is a useful characteristic for producing a triangle waveform when seen from the perspective of wave shaping techniques. The MC4558 and the JRC4558D are two examples of dual Op-Amps that are evaluated, contrasted, and described in this article. At supply voltages of +7 V and -7 V, the suggested quadrature triangle oscillator that uses Op-Amps MC4558 and JRC4558D has the same oscillation frequency, which is 63 kHz, as demonstrated by simulation and experimental data. The frequency stability is estimated to be around 0.23%. In addition, the findings from the experiment demonstrate that the proposed oscillator is a practical solution for the SPWM DC-AC power conversion application

    Differential Difference Current Conveyor (DDCC) Based Schmitt Trigger Circuit & Its Application

    Get PDF
    A new voltage mode Schmitt trigger and its application using Differential Difference Current Conveyor (DDCC) is presented in this paper. The proposed circuit has a single DDCC block & two passive components. This circuit does not have any matching conditions. Here two passive components are used and one of them is grounded .The proposed circuit is simulated on SPICE platfor

    Circuits for Analog Signal Processing Employing Unconventional Active Elements

    Get PDF
    Disertační práce se zabývá zaváděním nových struktur moderních aktivních prvků pracujících v napěťovém, proudovém a smíšeném režimu. Funkčnost a chování těchto prvků byly ověřeny prostřednictvím SPICE simulací. V této práci je zahrnuta řada simulací, které dokazují přesnost a dobré vlastnosti těchto prvků, přičemž velký důraz byl kladen na to, aby tyto prvky byly schopny pracovat při nízkém napájecím napětí, jelikož poptávka po přenosných elektronických zařízeních a implantabilních zdravotnických přístrojích stále roste. Tyto přístroje jsou napájeny bateriemi a k tomu, aby byla prodloužena jejich životnost, trend navrhování analogových obvodů směřuje k stále většímu snižování spotřeby a napájecího napětí. Hlavním přínosem této práce je návrh nových CMOS struktur: CCII (Current Conveyor Second Generation) na základě BD (Bulk Driven), FG (Floating Gate) a QFG (Quasi Floating Gate); DVCC (Differential Voltage Current Conveyor) na základě FG, transkonduktor na základě nové techniky BD_QFG (Bulk Driven_Quasi Floating Gate), CCCDBA (Current Controlled Current Differencing Buffered Amplifier) na základě GD (Gate Driven), VDBA (Voltage Differencing Buffered Amplifier) na základě GD a DBeTA (Differential_Input Buffered and External Transconductance Amplifier) na základě BD. Dále je uvedeno několik zajímavých aplikací užívajících výše jmenované prvky. Získané výsledky simulací odpovídají teoretickým předpokladům.The dissertation thesis deals with implementing new structures of modern active elements working in voltage_, current_, and mixed mode. The functionality and behavior of these elements have been verified by SPICE simulation. Sufficient numbers of simulated plots are included in this thesis to illustrate the precise and strong behavior of those elements. However, a big attention to implement active elements by utilizing LV LP (Low Voltage Low Power) techniques is given in this thesis. This attention came from the fact that growing demand of portable electronic equipments and implantable medical devices are pushing the development towards LV LP integrated circuits because of their influence on batteries lifetime. More specifically, the main contribution of this thesis is to implement new CMOS structures of: CCII (Current Conveyor Second Generation) based on BD (Bulk Driven), FG (Floating Gate) and QFG (Quasi Floating Gate); DVCC (Differential Voltage Current Conveyor) based on FG; Transconductor based on new technique of BD_QFG (Bulk Driven_Quasi Floating Gate); CCCDBA (Current Controlled Current Differencing Buffered Amplifier) based on conventional GD (Gate Driven); VDBA (Voltage Differencing Buffered Amplifier) based on GD. Moreover, defining new active element i.e. DBeTA (Differential_Input Buffered and External Transconductance Amplifier) based on BD is also one of the main contributions of this thesis. To confirm the workability and attractive properties of the proposed circuits many applications were exhibited. The given results agree well with the theoretical anticipation.

    Analog Reconfigurable Circuits

    Get PDF
    The aim of this paper is to present an overview of a new branch of analog electronics represented by analog reconfigurable circuits. The reconfiguration of analog circuits has been known and used since the beginnings of electronics, but the universal reconfigurable circuits called Field Programmable Analog Arrays (FPAA) have been developed over the last two decades. This paper presents the classification of analog circuit reconfiguration, examples of FPAA solutions obtained as academic projects and commercially available ones, as well as some application examples of the dynamic reconfiguration of FPAA.

    Electronically Tunable Oscillator Utilizing Reinforced Controllable Parameters

    Get PDF
    This paper presents a novel solution of an oscillator with electronically adjustable oscillation condition (CO) and frequency of oscillations (FO). Oscillation condition is controlled by current gain and frequency of oscillations is adjustable by transconductance and intrinsic resistance of used active elements. Both CO and FO are mutually independent. Moreover, special feature of CO allows boosting parameter driving FO (transconductance) and then shifting the whole FO range to higher bands. It allows to keep values of passive elements (capacitors especially) in satisfactory range even for higher value of FO. Simulations in PSpice confirms this hypothesis

    New Electronic Interface Circuits for Humidity Measurement Based on the Current Processing Technique

    Get PDF
    The paper describes a new electronic conditioning circuit based on the current-processing technique for accurate and reliable humidity measurement, without post-processing requirements. Pseudobrookite nanocrystalline (Fe2TiO5) thick film was used as capacitive humidity transducer in the proposed design. The interface integrated circuit was realized in TSMC 0.18 mu m CMOS technology, but commercial devices were used for practical realization. The sensing principle of the sensor was obtained by converting the information on environment humidity into a frequency variable square-wave electric current signal. The proposed solution features high linearity, insensitivity to temperature, as well as low power consumption. The sensor has a linear function with relative humidity in the range of Relative Humidity (RH) 30-90 %, error below 1.5 %, and sensitivity 8.3 x 10(14) Hz/F evaluated over the full range of changes. A fast recovery without the need of any refreshing methods was observed with a change in RH. The total power dissipation of readout circuitry was 1 mW

    Design of Signal Generators Using Active Elements Developed in I3T25 CMOS Technology Single IC Package for Illuminance to Frequency Conversion

    Get PDF
    This paper presents a compact and simple design of adjustable triangular and square wave functional generators employing fundamental cells fabricated on a single integrated circuit (IC) package. Two solutions have electronically tunable repeating frequency. The linear adjustability of repeating frequency was verified in the range between 17 and 264 kHz. The main benefits of the proposed generator are the follows: A simple adjustment of the repeating frequency by DC bias current, Schmitt trigger (threshold voltages) setting by DC driving voltage, and output levels in hundreds of mV when the complementary metal-oxide semiconductor (CMOS) process with limited supply voltage levels is used. These generators are suitable to provide a simple conversion of illuminance to frequency of oscillation that can be employed for illuminance measurement and sensing in the agriculture applications. Experimental measurements proved that the proposed concept is usable for sensing of illuminance in the range from 1 up to 500 lx. The change of illuminance within this range causes driving of bias current between 21 and 52 mu A that adjusts repeating frequency between 70 and 154 kHz with an error up to 10% between the expected and real cases

    Arbitrarily Tunable Phase Shift in Low-Frequency Multiphase Oscillator

    Get PDF
    A special electronically tunable multiphase oscillator with arbitrarily and continuously adjustable phase shifts is introduced. Our design assumes to set the phase around the asymptotical limit of 180.. These features cannot be easily achieved in a standard way, i.e., any simple single-phase oscillator supplemented by a first-order adjustable all-pass (AP) section (shifter). The proposed design uses an electronically linearly tunable quadrature oscillator with a frequency range from 0.98 up to 12.54 kHz. It also offers multiples of 45. as the initial setting of the phase shift tuning region. The example of operation shows the adjustment of the phase shift at a specific frequency (10 kHz) within the range of +/- 45 degrees. and around -180 degrees, -135 degrees, and -90 degrees. This variability is not available in standard cases without the use of several AP sections. The current value of the phase shift of the presented oscillator is electronically controlled and does not influence the oscillation frequency and condition of oscillation. Output levels of produced signals are not influenced by this tuning process and are in the range of several hundreds of mV. Two applications of the oscillator are proposed. The first one focuses on low-bitrate modulation systems [phase shift keying (PSK)] while in the second one, our circuit represents a source of phase-adjustable signals in acoustic experiments. Discrete passive elements and active devices (special multipliers having current output terminals, unity-gain differential voltage buffers) fabricated in 0.35 mu m I3T25 ON Semiconductor 3.3 V CMOS process are used in experimental verification

    Digital-based analog processing in nanoscale CMOS ICs for IoT applications

    Get PDF
    The Internet-of-Things (IoT) concept has been opening up a variety of applications, such as urban and environmental monitoring, smart health, surveillance, and home automation. Most of these IoT applications require more and more power/area efficient Complemen tary Metal–Oxide–Semiconductor (CMOS) systems and faster prototypes (lower time-to market), demanding special modifications in the current IoT design system bottleneck: the analog/RF interfaces. Specially after the 2000s, it is evident that there have been significant improvements in CMOS digital circuits when compared to analog building blocks. Digital circuits have been taking advantage of CMOS technology scaling in terms of speed, power consump tion, and cost, while the techniques running behind the analog signal processing are still lagging. To decrease this historical gap, there has been an increasing trend in finding alternative IC design strategies to implement typical analog functions exploiting Digital in-Concept Design Methodologies (DCDM). This idea of re-thinking analog functions in digital terms has shown that Analog ICs blocks can also avail of the feature-size shrinking and energy efficiency of new technologies. This thesis deals with the development of DCDM, demonstrating its compatibility for Ultra-Low-Voltage (ULV) and Power (ULP) IoT applications. This work proves this state ment through the proposing of new digital-based analog blocks, such as an Operational Transconductance Amplifiers (OTAs) and an ac-coupled Bio-signal Amplifier (BioAmp). As an initial contribution, for the first time, a silicon demonstration of an embryonic Digital-Based OTA (DB-OTA) published in 2013 is exhibited. The fabricated DB-OTA test chip occupies a compact area of 1,426 µm2 , operating at supply voltages (VDD) down to 300 mV, consuming only 590 pW while driving a capacitive load of 80pF. With a Total Harmonic Distortion (THD) lower than 5% for a 100mV input signal swing, its measured small-signal figure of merit (FOMS) and large-signal figure of merit (FOML) are 2,101 V −1 and 1,070, respectively. To the best of this thesis author’s knowledge, this measured power is the lowest reported to date in OTA literature, and its figures of merit are the best in sub-500mV OTAs reported to date. As the second step, mainly due to the robustness limitation of previous DB-OTA, a novel calibration-free digital-based topology is proposed, named here as Digital OTA (DIG OTA). A 180-nm DIGOTA test chip is also developed exhibiting an area below the 1000 µm2 wall, 2.4nW power under 150pF load, and a minimum VDD of 0.25 V. The proposed DIGOTA is more digital-like compared with DB-OTA since no pseudo-resistor is needed. As the last contribution, the previously proposed DIGOTA is then used as a building block to demonstrate the operation principle of power-efficient ULV and ultra-low area (ULA) fully-differential, digital-based Operational Transconductance Amplifier (OTA), suitable for microscale biosensing applications (BioDIGOTA) such as extreme low area Body Dust. Measured results in 180nm CMOS confirm that the proposed BioDIGOTA can work with a supply voltage down to 400 mV, consuming only 95 nW. The BioDIGOTA layout occupies only 0.022 mm2 of total silicon area, lowering the area by 3.22X times compared to the current state of the art while keeping reasonable system performance, such as 7.6 Noise Efficiency Factor (NEF) with 1.25 µVRMS input-referred noise over a 10 Hz bandwidth, 1.8% of THD, 62 dB of the common-mode rejection ratio (CMRR) and 55 dB of power supply rejection ratio (PSRR). After reviewing the current DCDM trend and all proposed silicon demonstrations, the thesis concludes that, despite the current analog design strategies involved during the analog block development
    corecore