121 research outputs found

    Design of Tunable Beamforming Networks Using Metallic Ridge Gap Waveguide Technology

    Get PDF
    Wireless communication is a leap of development in the history of humanity. For the past 100 years, a considerable effort has been spent to develop better standards, and technologies for a higher speed wireless communication with high system capacity for different applications. This requires the design of a high-frequency, point-to-multipoint antenna array system to achieve the mentioned goals. In addition, the reconfigurability of this antenna system is essential to change the system characteristics to achieve acceptable performance in different situations. The main goal of this thesis is to design a reconfigurable beamforming network to work on the Ka-band for waveguide applications. Among different beamforming networks in the literature, the Butler matrix is chosen due to its higher efficiency and the smaller number of components required than other beamforming networks. The Butler matrix is designed using a dual-plane topology to avoid using crossovers. Ridge gap waveguide technology is chosen among different transmission lines to implement the Butler matrix for several reasons: It does not need dielectrics to operate, so its power handling capacity is defined by the gap height, and it has no dielectric losses. Its zero-field region represents the operating principle for some tunable devices introduced here and its contactless nature, which eases the assembly of waveguide parts at the millimeter-wave frequencies. The reconfigurability of the Butler matrix is implemented such that beamwidth, maximum gain, and beam direction may be all tuned for optimum system performance. To that end, several components are designed to achieve the required target, and strict requirements are placed on several components to achieve an acceptable cascaded-system performance. These components include a ridge gap waveguide 90o-hybrid working over a more than 30% bandwidth, which can provide several coupling levels ranging from 3 dB to 33 dB and a return loss and isolation better than 30 dB. Another component is a wideband reconfigurable power splitter that has a 40% bandwidth, a return loss better than 20 dB in the worst case and the ability to achieve all power splitting ratios including switching between the two guides. In addition, a wideband reconfigurable phase shifter is designed to have 33% bandwidth and phase shift tuning range from 0o to 200o. Two coaxial-to-ridge gap waveguide transitions are designed to work over a more than 100% bandwidth to facilitate testing different ridge gap waveguide components. Analysis of the asymmetric double ridge waveguide is introduced where its impedance is deduced and may be used to design a single to double ridge waveguide transition useful for the dual-plane Butler matrix introduced here. In addition, this concept is used to develop a wideband unequal power divider in the single ridge waveguide technology. At the end, the whole system is assembled to show its performance in different tuning states. The ability of the system to produce radiation patterns of different characteristics is demonstrated. The presented Butler matrix design is a promising beamforming network for several applications like radar, base stations for mobile communications, and satellite applications

    Design of a compact multifunctional power divider loaded with short-ended stub

    Get PDF
    The article presents a compact multifunctional power divider loaded with short-ended stub for RF front end system at 2.5 GHz application. The proposed structure consists of PIN diodes and short-ended stub at the output transmission line. Wilkinson power divider and SPDT switch at 2.5 GHz can be achieved by changing the bias voltage of the integrated PIN diodes. As the proposed design transitions from a power divider to an SPDT switch, a short stub is introduced at the output ports to prevent mismatches from occurring. The proposed SPDT switch design has been mathematically analyzed and presented in detail. Two frequency component functions are combined in a small package with three RF connectors. This proposed design is constructed and characterized for experimental-demonstration purposes. The method proposed in this article is simpler compared to the previous work and easy to fabricate. This technique will reduce the overall size and manufacturing cost. It also can be applied to design the multifunctional power divider at any desired specifications and operating frequencies that compatible with RF/microwave applications, such as smart antennas and phase-array antennas

    Co-design of Reconfigurable and Multifunction Passive RF/Microwave Components

    Get PDF
    In order to meet the market demands, multi-band communication systems that are able to accommodate different wireless technologies to be compatible with different wireless standards should be investigated and realized. Multifunction and multi-band RF front-end components are promising solutions for reducing the size and enhancing the performance of multi-band communication systems. This dissertation focuses on the design and implementation of different multifunction and tunable microwave components for use in multi-standard, flexible transceiver. For frequency-domain duplexing (FDD) communication systems, in which the uplink and downlink channels are carried on different RF frequencies, a diplexer is an essential component to separate the transmitting and receiving signals from the antenna. Electrically tunable diplexers simplify the architecture of reconfigurable RF-front end. Moreover, in modern communication systems, the crowding of the spectrum and the scaling of electronics can result in higher common-mode interference and even-order non-linearity issues. In this dissertation, three tunable compact SIW-based dual-mode diplexers, with various SE (single-ended) and BAL (balanced) capabilities, are introduced for the first time. The dual-mode operation results in a dependent tuning between the two ports. The presented designs are for SE-SE, SE-BAL, and BAL-BAL. However, based on the presented design concepts, any combination of the diplexer ports can be achieved in terms of supporting the balanced and single-ended system interface. The fabricated diplexers show low insertion loss, high isolation, good tuning range and high common mode rejection. Tunable bandstop filter (BSF) is one of the essential components in the design of RF front-ends that require wide-band operations. A wide-open front-end leaves the receiver vulnerable to jamming by high-power signals. As a result, this type of front-ends requires dynamic isolation of any interfering signal. Realization of such filters in a balanced configuration, as a second function, is an important step in the realization of full-balanced RF front-ends. Balanced (differential) circuits have many important advantages over unbalanced (single-ended) circuits such as immunity to system noise, reduction of transient noise generation and inherent suppression of even-order nonlinearities. All reported balanced filters are bandpass filters that target wide pass-bands and high common-mode rejection. These filters are necessary for wide-band RF front-ends but, as mentioned above, leave the system open to interferers and jammers. In this dissertation, a new differential coupling structure for evanescent-mode cavity resonators is developed, enabling the design of fully-balanced tunable BSF. The proposed filter is tunable from 1.57-3.18 GHz with 102% tuning range. In addition, over the full range, the measured 10-dB fractional bandwidth ranges from 1-2.4%, and the attenuation level is better than 47 dB. Lastly, Substrate Integrated Waveguide (SIW) evanescent-mode cavity resonators (EVA) are employed in the design of RF couplers, quadrature hybrid and rat-race couplers. These couplers are used in the design of numerous RF front-end components such as power amplifiers, balanced mixers, and antenna array feeding networks. Utilizing such resonators (EVA) in the design allows the couplers to have wide spurious-free range, low power consumption, high power handling capability and both tunability and filtering capabilities. The proposed quadrature hybrid coupler can be tuned starting from 1.32–2.22 GHz with a measured insertion loss range from 1.29 to 0.7 dB. The measured reflection and isolation are better than 12 dB and 17 dB, respectively. Moreover, the coupler has a measured spurious free range of 5.1–3fo (lowest–highest frequency). Regarding rat-race coupler, two designs are introduced. The first design is based on a full-mode cavity while the second one is more compact and based on a half-mode cavity. Both designs show more than 70% tuning range, and the isolation is better than 30 dB

    Microwave and Millimeter-wave Miniaturization Techniques, and Their Applications

    Get PDF
    Miniaturization is an inevitable requirement for modern microwave and mm-wave circuits and systems. With the emerging of high frequency monolithic integrated circuits, it is the passive components’ section that usually occupies the most of the area. As a result, developing creative miniaturization techniques in order to reduce the physical sizes of passive components while keep their high performance characteristics is demanding. On the other hand, it is the application that defines the importance and effectiveness of the miniaturization method. For example, in commercial handset wireless communication systems, it is the portability that primarily dictates miniaturization. However, in case of liquid sensing applications, the required volume of the sample, cost, or other parameters might impose size limitations. In this thesis, various microwave and mm-wave miniaturization methods are introduced. The methods are applied to various passive components and blocks in different applications to better study their effectiveness. Both componentlevel designs and system-level hybrid integration are benefited from the miniaturization methods introduced in this thesis. The proposed methods are also experimentally tested, and the results show promising potential for the proposed methods

    New Architectures for Low Complexity Scalable Phased Arrays

    Full text link
    Inspired by the unique advantages of phased arrays in communication and radar systems, i.e. their capability to increase the channel capacity, signal-to-noise ratio, directivity, and radar resolution, this dissertation presents novel architectures for low-complexity scalable phased arrays to facilitate their widespread use in commercial applications. In phased arrays, phase shifters are one of the key components responsible for adjusting the signal phase across the array elements. In general, phase shifters and their control circuitry play a significant role in determining the complexity and size of conventional phased arrays. To reduce phased arrays’ complexity and size without degrading their performance, two new circuit architectures for scalable phased arrays with a significantly reduced number of phase shifters and control signals are presented. These architectures can be utilized for designing phased arrays in receive as well as transmit mode. The phased arrays designed based on the proposed architectures are intended for applications such as 5G communications and automotive radars for advanced driver assistance systems (ADAS) and autonomous vehicles.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/147494/1/noyan_1.pd

    Saw-Less radio receivers in CMOS

    Get PDF
    Smartphones play an essential role in our daily life. Connected to the internet, we can easily keep in touch with family and friends, even if far away, while ever more apps serve us in numerous ways. To support all of this, higher data rates are needed for ever more wireless users, leading to a very crowded radio frequency spectrum. To achieve high spectrum efficiency while reducing unwanted interference, high-quality band-pass filters are needed. Piezo-electrical Surface Acoustic Wave (SAW) filters are conventionally used for this purpose, but such filters need a dedicated design for each new band, are relatively bulky and also costly compared to integrated circuit chips. Instead, we would like to integrate the filters as part of the entire wireless transceiver with digital smartphone hardware on CMOS chips. The research described in this thesis targets this goal. It has recently been shown that N-path filters based on passive switched-RC circuits can realize high-quality band-select filters on CMOS chips, where the center frequency of the filter is widely tunable by the switching-frequency. As CMOS downscaling following Moore’s law brings us lower clock-switching power, lower switch on-resistance and more compact metal-to-metal capacitors, N-path filters look promising. This thesis targets SAW-less wireless receiver design, exploiting N-path filters. As SAW-filters are extremely linear and selective, it is very challenging to approximate this performance with CMOS N-path filters. The research in this thesis proposes and explores several techniques for extending the linearity and enhancing the selectivity of N-path switched-RC filters and mixers, and explores their application in CMOS receiver chip designs. First the state-of-the-art in N-path filters and mixer-first receivers is reviewed. The requirements on the main receiver path are examined in case SAW-filters are removed or replaced by wideband circulators. The feasibility of a SAW-less Frequency Division Duplex (FDD) radio receiver is explored, targeting extreme linearity and compression Irequirements. A bottom-plate mixing technique with switch sharing is proposed. It improves linearity by keeping both the gate-source and gate-drain voltage swing of the MOSFET-switches rather constant, while halving the switch resistance to reduce voltage swings. A new N-path switch-RC filter stage with floating capacitors and bottom-plate mixer-switches is proposed to achieve very high linearity and a second-order voltage-domain RF-bandpass filter around the LO frequency. Extra out-of-band (OOB) rejection is implemented combined with V-I conversion and zero-IF frequency down-conversion in a second cross-coupled switch-RC N-path stage. It offers a low-ohmic high-linearity current path for out-of-band interferers. A prototype chip fabricated in a 28 nm CMOS technology achieves an in-band IIP3 of +10 dBm , IIP2 of +42 dBm, out-of-band IIP3 of +44 dBm, IIP2 of +90 dBm and blocker 1-dB gain-compression point of +13 dBm for a blocker frequency offset of 80 MHz. At this offset frequency, the measured desensitization is only 0.6 dB for a 0-dBm blocker, and 3.5 dB for a 10-dBm blocker at 0.7 GHz operating frequency (i.e. 6 and 9 dB blocker noise figure). The chip consumes 38-96 mW for operating frequencies of 0.1-2 GHz and occupies an active area of 0.49 mm2. Next, targeting to cover all frequency bands up to 6 GHz and achieving a noise figure lower than 3 dB, a mixer-first receiver with enhanced selectivity and high dynamic range is proposed. Capacitive negative feedback across the baseband amplifier serves as a blocker bypassing path, while an extra capacitive positive feedback path offers further blocker rejection. This combination of feedback paths synthesizes a complex pole pair at the input of the baseband amplifier, which is up-converted to the RF port to obtain steeper RF-bandpass filter roll-off than the conventional up-converted real pole and reduced distortion. This thesis explains the circuit principle and analyzes receiver performance. A prototype chip fabricated in 45 nm Partially Depleted Silicon on Insulator (PDSOI) technology achieves high linearity (in-band IIP3 of +3 dBm, IIP2 of +56 dBm, out-of-band IIP3 = +39 dBm, IIP2 = +88 dB) combined with sub-3 dB noise figure. Desensitization due to a 0-dBm blocker is only 2.2 dB at 1.4 GHz operating frequency. IIFinally, to demonstrate the performance of the implemented blocker-tolerant receiver chip designs, a test setup with a real mobile phone is built to verify the sensitivity of the receiver chip for different practical blocking scenarios

    Antennas and Propagation Aspects for Emerging Wireless Communication Technologies

    Get PDF
    The increasing demand for high data rate applications and the delivery of zero-latency multimedia content drives technological evolutions towards the design and implementation of next-generation broadband wireless networks. In this context, various novel technologies have been introduced, such as millimeter wave (mmWave) transmission, massive multiple input multiple output (MIMO) systems, and non-orthogonal multiple access (NOMA) schemes in order to support the vision of fifth generation (5G) wireless cellular networks. The introduction of these technologies, however, is inextricably connected with a holistic redesign of the current transceiver structures, as well as the network architecture reconfiguration. To this end, ultra-dense network deployment along with distributed massive MIMO technologies and intermediate relay nodes have been proposed, among others, in order to ensure an improved quality of services to all mobile users. In the same framework, the design and evaluation of novel antenna configurations able to support wideband applications is of utmost importance for 5G context support. Furthermore, in order to design reliable 5G systems, the channel characterization in these frequencies and in the complex propagation environments cannot be ignored because it plays a significant role. In this Special Issue, fourteen papers are published, covering various aspects of novel antenna designs for broadband applications, propagation models at mmWave bands, the deployment of NOMA techniques, radio network planning for 5G networks, and multi-beam antenna technologies for 5G wireless communications
    • …
    corecore