3,053 research outputs found

    Adaptive RF front-ends : providing resilience to changing environments

    Get PDF

    Adaptive Baseband Pro cessing and Configurable Hardware for Wireless Communication

    Get PDF
    The world of information is literally at one’s fingertips, allowing access to previously unimaginable amounts of data, thanks to advances in wireless communication. The growing demand for high speed data has necessitated theuse of wider bandwidths, and wireless technologies such as Multiple-InputMultiple-Output (MIMO) have been adopted to increase spectral efficiency.These advanced communication technologies require sophisticated signal processing, often leading to higher power consumption and reduced battery life.Therefore, increasing energy efficiency of baseband hardware for MIMO signal processing has become extremely vital. High Quality of Service (QoS)requirements invariably lead to a larger number of computations and a higherpower dissipation. However, recognizing the dynamic nature of the wirelesscommunication medium in which only some channel scenarios require complexsignal processing, and that not all situations call for high data rates, allowsthe use of an adaptive channel aware signal processing strategy to provide adesired QoS. Information such as interference conditions, coherence bandwidthand Signal to Noise Ratio (SNR) can be used to reduce algorithmic computations in favorable channels. Hardware circuits which run these algorithmsneed flexibility and easy reconfigurability to switch between multiple designsfor different parameters. These parameters can be used to tune the operations of different components in a receiver based on feedback from the digitalbaseband. This dissertation focuses on the optimization of digital basebandcircuitry of receivers which use feedback to trade power and performance. Aco-optimization approach, where designs are optimized starting from the algorithmic stage through the hardware architectural stage to the final circuitimplementation is adopted to realize energy efficient digital baseband hardwarefor mobile 4G devices. These concepts are also extended to the next generation5G systems where the energy efficiency of the base station is improved.This work includes six papers that examine digital circuits in MIMO wireless receivers. Several key blocks in these receiver include analog circuits thathave residual non-linearities, leading to signal intermodulation and distortion.Paper-I introduces a digital technique to detect such non-linearities and calibrate analog circuits to improve signal quality. The concept of a digital nonlinearity tuning system developed in Paper-I is implemented and demonstratedin hardware. The performance of this implementation is tested with an analogchannel select filter, and results are presented in Paper-II. MIMO systems suchas the ones used in 4G, may employ QR Decomposition (QRD) processors tosimplify the implementation of tree search based signal detectors. However,the small form factor of the mobile device increases spatial correlation, whichis detrimental to signal multiplexing. Consequently, a QRD processor capableof handling high spatial correlation is presented in Paper-III. The algorithm and hardware implementation are optimized for carrier aggregation, which increases requirements on signal processing throughput, leading to higher powerdissipation. Paper-IV presents a method to perform channel-aware processingwith a simple interpolation strategy to adaptively reduce QRD computationcount. Channel properties such as coherence bandwidth and SNR are used toreduce multiplications by 40% to 80%. These concepts are extended to usetime domain correlation properties, and a full QRD processor for 4G systemsfabricated in 28 nm FD-SOI technology is presented in Paper-V. The designis implemented with a configurable architecture and measurements show thatcircuit tuning results in a highly energy efficient processor, requiring 0.2 nJ to1.3 nJ for each QRD. Finally, these adaptive channel-aware signal processingconcepts are examined in the scope of the next generation of communicationsystems. Massive MIMO systems increase spectral efficiency by using a largenumber of antennas at the base station. Consequently, the signal processingat the base station has a high computational count. Paper-VI presents a configurable detection scheme which reduces this complexity by using techniquessuch as selective user detection and interpolation based signal processing. Hardware is optimized for resource sharing, resulting in a highly reconfigurable andenergy efficient uplink signal detector

    A 90 nm CMOS 16 Gb/s Transceiver for Optical Interconnects

    Get PDF
    Interconnect architectures which leverage high-bandwidth optical channels offer a promising solution to address the increasing chip-to-chip I/O bandwidth demands. This paper describes a dense, high-speed, and low-power CMOS optical interconnect transceiver architecture. Vertical-cavity surface-emitting laser (VCSEL) data rate is extended for a given average current and corresponding reliability level with a four-tap current summing FIR transmitter. A low-voltage integrating and double-sampling optical receiver front-end provides adequate sensitivity in a power efficient manner by avoiding linear high-gain elements common in conventional transimpedance-amplifier (TIA) receivers. Clock recovery is performed with a dual-loop architecture which employs baud-rate phase detection and feedback interpolation to achieve reduced power consumption, while high-precision phase spacing is ensured at both the transmitter and receiver through adjustable delay clock buffers. A prototype chip fabricated in 1 V 90 nm CMOS achieves 16 Gb/s operation while consuming 129 mW and occupying 0.105 mm^2

    An Analog VLSI Deep Machine Learning Implementation

    Get PDF
    Machine learning systems provide automated data processing and see a wide range of applications. Direct processing of raw high-dimensional data such as images and video by machine learning systems is impractical both due to prohibitive power consumption and the “curse of dimensionality,” which makes learning tasks exponentially more difficult as dimension increases. Deep machine learning (DML) mimics the hierarchical presentation of information in the human brain to achieve robust automated feature extraction, reducing the dimension of such data. However, the computational complexity of DML systems limits large-scale implementations in standard digital computers. Custom analog signal processing (ASP) can yield much higher energy efficiency than digital signal processing (DSP), presenting means of overcoming these limitations. The purpose of this work is to develop an analog implementation of DML system. First, an analog memory is proposed as an essential component of the learning systems. It uses the charge trapped on the floating gate to store analog value in a non-volatile way. The memory is compatible with standard digital CMOS process and allows random-accessible bi-directional updates without the need for on-chip charge pump or high voltage switch. Second, architecture and circuits are developed to realize an online k-means clustering algorithm in analog signal processing. It achieves automatic recognition of underlying data pattern and online extraction of data statistical parameters. This unsupervised learning system constitutes the computation node in the deep machine learning hierarchy. Third, a 3-layer, 7-node analog deep machine learning engine is designed featuring online unsupervised trainability and non-volatile floating-gate analog storage. It utilizes massively parallel reconfigurable current-mode analog architecture to realize efficient computation. And algorithm-level feedback is leveraged to provide robustness to circuit imperfections in analog signal processing. At a processing speed of 8300 input vectors per second, it achieves 1×1012 operation per second per Watt of peak energy efficiency. In addition, an ultra-low-power tunable bump circuit is presented to provide similarity measures in analog signal processing. It incorporates a novel wide-input-range tunable pseudo-differential transconductor. The circuit demonstrates tunability of bump center, width and height with a power consumption significantly lower than previous works

    Timing error detection and correction for power efficiency: an aggressive scaling approach

    Get PDF
    Low-power consumption has become an important aspect of processors and systems design. Many techniques ranging from architectural to system level are available. Voltage scaling or frequency boosting methods are the most effective to achieve low-power consumption as the dynamic power is proportional to the frequency and to the square of the supply voltage. The basic principle of operation of aggressive voltage scaling is to adjust the supply voltage to the lowest level possible to achieve minimum power consumption while maintaining reliable operations. Similarly, aggressive frequency boosting is to alter the operating frequency to achieve optimum performance improvement. In this study, an aggressive technique which employs voltage or frequency varying hardware circuit with the time-borrowing feature is presented. The proposed technique double samples the data to detect any timing violations as the frequency/voltage is scaled. The detected violations are masked by phase delaying the flip-flop clock to capture the late arrival data. This makes the system timing error tolerant without incurring error correction timing penalty. The proposed technique is implemented in a field programmable gate array using a two-stage arithmetic pipeline. Results on various benchmarks clearly demonstrate the achieved power savings and performance improvement.N/

    Designing energy-efficient sub-threshold logic circuits using equalization and non-volatile memory circuits using memristors

    Full text link
    The very large scale integration (VLSI) community has utilized aggressive complementary metal-oxide semiconductor (CMOS) technology scaling to meet the ever-increasing performance requirements of computing systems. However, as we enter the nanoscale regime, the prevalent process variation effects degrade the CMOS device reliability. Hence, it is increasingly essential to explore emerging technologies which are compatible with the conventional CMOS process for designing highly-dense memory/logic circuits. Memristor technology is being explored as a potential candidate in designing non-volatile memory arrays and logic circuits with high density, low latency and small energy consumption. In this thesis, we present the detailed functionality of multi-bit 1-Transistor 1-memRistor (1T1R) cell-based memory arrays. We present the performance and energy models for an individual 1T1R memory cell and the memory array as a whole. We have considered TiO2- and HfOx-based memristors, and for these technologies there is a sub-10% difference between energy and performance computed using our models and HSPICE simulations. Using a performance-driven design approach, the energy-optimized TiO2-based RRAM array consumes the least write energy (4.06 pJ/bit) and read energy (188 fJ/bit) when storing 3 bits/cell for 100 nsec write and 1 nsec read access times. Similarly, HfOx-based RRAM array consumes the least write energy (365 fJ/bit) and read energy (173 fJ/bit) when storing 3 bits/cell for 1 nsec write and 200 nsec read access times. On the logic side, we investigate the use of equalization techniques to improve the energy efficiency of digital sequential logic circuits in sub-threshold regime. We first propose the use of a variable threshold feedback equalizer circuit with combinational logic blocks to mitigate the timing errors in digital logic designed in sub-threshold regime. This mitigation of timing errors can be leveraged to reduce the dominant leakage energy by scaling supply voltage or decreasing the propagation delay. At the fixed supply voltage, we can decrease the propagation delay of the critical path in a combinational logic block using equalizer circuits and, correspondingly decrease the leakage energy consumption. For a 8-bit carry lookahead adder designed in UMC 130 nm process, the operating frequency can be increased by 22.87% (on average), while reducing the leakage energy by 22.6% (on average) in the sub-threshold regime. Overall, the feedback equalization technique provides up to 35.4% lower energy-delay product compared to the conventional non-equalized logic. We also propose a tunable adaptive feedback equalizer circuit that can be used with sequential digital logic to mitigate the process variation effects and reduce the dominant leakage energy component in sub-threshold digital logic circuits. For a 64-bit adder designed in 130 nm our proposed approach can reduce the normalized delay variation of the critical path delay from 16.1% to 11.4% while reducing the energy-delay product by 25.83% at minimum energy supply voltage. In addition, we present detailed energy-performance models of the adaptive feedback equalizer circuit. This work serves as a foundation for the design of robust, energy-efficient digital logic circuits in sub-threshold regime

    inSense: A Variation and Fault Tolerant Architecture for Nanoscale Devices

    Get PDF
    Transistor technology scaling has been the driving force in improving the size, speed, and power consumption of digital systems. As devices approach atomic size, however, their reliability and performance are increasingly compromised due to reduced noise margins, difficulties in fabrication, and emergent nano-scale phenomena. Scaled CMOS devices, in particular, suffer from process variations such as random dopant fluctuation (RDF) and line edge roughness (LER), transistor degradation mechanisms such as negative-bias temperature instability (NBTI) and hot-carrier injection (HCI), and increased sensitivity to single event upsets (SEUs). Consequently, future devices may exhibit reduced performance, diminished lifetimes, and poor reliability. This research proposes a variation and fault tolerant architecture, the inSense architecture, as a circuit-level solution to the problems induced by the aforementioned phenomena. The inSense architecture entails augmenting circuits with introspective and sensory capabilities which are able to dynamically detect and compensate for process variations, transistor degradation, and soft errors. This approach creates ``smart\u27\u27 circuits able to function despite the use of unreliable devices and is applicable to current CMOS technology as well as next-generation devices using new materials and structures. Furthermore, this work presents an automated prototype implementation of the inSense architecture targeted to CMOS devices and is evaluated via implementation in ISCAS \u2785 benchmark circuits. The automated prototype implementation is functionally verified and characterized: it is found that error detection capability (with error windows from \approx30-400ps) can be added for less than 2\% area overhead for circuits of non-trivial complexity. Single event transient (SET) detection capability (configurable with target set-points) is found to be functional, although it generally tracks the standard DMR implementation with respect to overheads
    corecore