296 research outputs found

    A distributional model of semantic context effects in lexical processinga

    Get PDF
    One of the most robust findings of experimental psycholinguistics is that the context in which a word is presented influences the effort involved in processing that word. We present a novel model of contextual facilitation based on word co-occurrence prob ability distributions, and empirically validate the model through simulation of three representative types of context manipulation: single word priming, multiple-priming and contextual constraint. In our simulations the effects of semantic context are mod eled using general-purpose techniques and representations from multivariate statistics, augmented with simple assumptions reflecting the inherently incremental nature of speech understanding. The contribution of our study is to show that special-purpose m echanisms are not necessary in order to capture the general pattern of the experimental results, and that a range of semantic context effects can be subsumed under the same principled account.›

    Institutional paraconsciousness and its pathologies

    Get PDF
    This analysis extends a recent mathematical treatment of the Baars consciousness model to analogous, but far more complicated, phenomena of institutional cognition. Individual consciousness is limited to a single, tunable, giant component of interacting cognitive modules, instantiating a Global Workspace. Human institutions, by contrast, support several, sometimes many, such giant components simultaneously, although their behavior remains constrained to a topology generated by cultural context and by the path-dependence inherent to organizational history. Such highly parallel multitasking - institutional paraconsciousness - while clearly limiting inattentional blindness and the consequences of failures within individual workspaces, does not eliminate them, and introduces new characteristic dysfunctions involving the distortion of information sent between global workspaces. Consequently, organizations (or machines designed along these principles), while highly efficient at certain kinds of tasks, remain subject to canonical and idiosyncratic failure patterns similar to, but more complicated than, those afflicting individuals. Remediation is complicated by the manner in which pathogenic externalities can write images of themselves on both institutional function and therapeutic intervention, in the context of relentless market selection pressures. The approach is broadly consonant with recent work on collective efficacy, collective consciousness, and distributed cognition

    Endogenous Business Cycles and the Economic Response to Exogenous Shocks

    Get PDF
    In this paper, we investigate the macroeconomic response to exogenous shocks, namely natural disasters and stochastic productivity shocks. To do so, we make use of an endogenous business cycle model in which cyclical behavior arises from the investment–profit instability; the amplitude of this instability is constrained by the increase in labor costs and the inertia of production capacity and thus results in a finite-amplitude business cycle. This model is found to exhibit a larger response to natural disasters during expansions than during recessions, because the exogenous shock amplifies pre-existing disequilibria when occurring during expansions, while the existence of unused resources during recessions allows for damping the shock. Our model also shows a higher output variability in response to stochastic productivity shocks during expansions than during recessions. This finding is at odds with the classical real-cycle theory, but it is supported by the analysis of quarterly U.S. Gross Domestic Product series; the latter series exhibits, on average, a variability that is 2.6 times larger during expansions than during recessions.Business cycles, Natural disasters, Productivity shocks, Output variability

    Spatiotemporal network coding of physiological mossy fiber inputs by the cerebellar granular layer

    Get PDF
    The granular layer, which mainly consists of granule and Golgi cells, is the first stage of the cerebellar cortex and processes spatiotemporal information transmitted by mossy fiber inputs with a wide variety of firing patterns. To study its dynamics at multiple time scales in response to inputs approximating real spatiotemporal patterns, we constructed a large-scale 3D network model of the granular layer. Patterned mossy fiber activity induces rhythmic Golgi cell activity that is synchronized by shared parallel fiber input and by gap junctions. This leads to long distance synchrony of Golgi cells along the transverse axis, powerfully regulating granule cell firing by imposing inhibition during a specific time window. The essential network mechanisms, including tunable Golgi cell oscillations, on-beam inhibition and NMDA receptors causing first winner keeps winning of granule cells, illustrate how fundamental properties of the granule layer operate in tandem to produce (1) well timed and spatially bound output, (2) a wide dynamic range of granule cell firing and (3) transient and coherent gating oscillations. These results substantially enrich our understanding of granule cell layer processing, which seems to promote spatial group selection of granule cell activity as a function of timing of mossy fiber input

    Collective consciousness and its pathologies: Understanding the failure of AIDS control and treatment in the United States

    Get PDF
    We address themes of distributed cognition by extending recent formal developments in the theory of individual consciousness. While single minds appear biologically limited to one dynamic structure of linked cognitive submodules instantiating consciousness, organizations, by contrast, can support several, sometimes many, such constructs simultaneously, although these usually operate relatively slowly. System behavior remains, however, constrained not only by culture, but by a developmental path dependence generated by organizational history, in the context of market selection pressures. Such highly parallel multitasking – essentially an institutional collective consciousness – while capable of reducing inattentional blindness and the consequences of failures within individual workspaces, does not eliminate them, and introduces new characteristic malfunctions involving the distortion of information sent between workspaces and the possibility of pathological resilience – dysfunctional institutional lock-in. Consequently, organizations remain subject to canonical and idiosyncratic failures analogous to, but more complicated than, those afflicting individuals. Remediation is made difficult by the manner in which pathological externalities can write images of themselves onto both institutional function and corrective intervention. The perspective is applied to the failure of AIDS control and treatment in the United States

    A Survey on Trust Computation in the Internet of Things

    Get PDF
    Internet of Things defines a large number of diverse entities and services which interconnect with each other and individually or cooperatively operate depending on context, conditions and environments, produce a huge personal and sensitive data. In this scenario, the satisfaction of privacy, security and trust plays a critical role in the success of the Internet of Things. Trust here can be considered as a key property to establish trustworthy and seamless connectivity among entities and to guarantee secure services and applications. The aim of this study is to provide a survey on various trust computation strategies and identify future trends in the field. We discuss trust computation methods under several aspects and provide comparison of the approaches based on trust features, performance, advantages, weaknesses and limitations of each strategy. Finally the research discuss on the gap of the trust literature and raise some research directions in trust computation in the Internet of Things
    corecore