19 research outputs found

    Uncertainty-Guided Lung Nodule Segmentation with Feature-Aware Attention

    Full text link
    Since radiologists have different training and clinical experiences, they may provide various segmentation annotations for a lung nodule. Conventional studies choose a single annotation as the learning target by default, but they waste valuable information of consensus or disagreements ingrained in the multiple annotations. This paper proposes an Uncertainty-Guided Segmentation Network (UGS-Net), which learns the rich visual features from the regions that may cause segmentation uncertainty and contributes to a better segmentation result. With an Uncertainty-Aware Module, this network can provide a Multi-Confidence Mask (MCM), pointing out regions with different segmentation uncertainty levels. Moreover, this paper introduces a Feature-Aware Attention Module to enhance the learning of the nodule boundary and density differences. Experimental results show that our method can predict the nodule regions with different uncertainty levels and achieve superior performance in LIDC-IDRI dataset.Comment: 10 pages, 4 figures, 30 reference

    Deep Learning of Unified Region, Edge, and Contour Models for Automated Image Segmentation

    Full text link
    Image segmentation is a fundamental and challenging problem in computer vision with applications spanning multiple areas, such as medical imaging, remote sensing, and autonomous vehicles. Recently, convolutional neural networks (CNNs) have gained traction in the design of automated segmentation pipelines. Although CNN-based models are adept at learning abstract features from raw image data, their performance is dependent on the availability and size of suitable training datasets. Additionally, these models are often unable to capture the details of object boundaries and generalize poorly to unseen classes. In this thesis, we devise novel methodologies that address these issues and establish robust representation learning frameworks for fully-automatic semantic segmentation in medical imaging and mainstream computer vision. In particular, our contributions include (1) state-of-the-art 2D and 3D image segmentation networks for computer vision and medical image analysis, (2) an end-to-end trainable image segmentation framework that unifies CNNs and active contour models with learnable parameters for fast and robust object delineation, (3) a novel approach for disentangling edge and texture processing in segmentation networks, and (4) a novel few-shot learning model in both supervised settings and semi-supervised settings where synergies between latent and image spaces are leveraged to learn to segment images given limited training data.Comment: PhD dissertation, UCLA, 202

    Deep Learning in Medical Image Analysis

    Get PDF
    The accelerating power of deep learning in diagnosing diseases will empower physicians and speed up decision making in clinical environments. Applications of modern medical instruments and digitalization of medical care have generated enormous amounts of medical images in recent years. In this big data arena, new deep learning methods and computational models for efficient data processing, analysis, and modeling of the generated data are crucially important for clinical applications and understanding the underlying biological process. This book presents and highlights novel algorithms, architectures, techniques, and applications of deep learning for medical image analysis

    On Medical Image Segmentation and on Modeling Long Term Dependencies

    Get PDF
    La délimitation (segmentation) des tumeurs malignes à partir d’images médicales est importante pour le diagnostic du cancer, la planification des traitements ciblés, ainsi que les suivis de la progression du cancer et de la réponse aux traitements. Cependant, bien que la segmentation manuelle des images médicales soit précise, elle prend du temps, nécessite des opérateurs experts et est souvent peu pratique lorsque de grands ensembles de données sont utilisés. Ceci démontre la nécessité d’une segmentation automatique. Cependant, la segmentation automatisée des tumeurs est particulièrement difficile en raison de la variabilité de l’apparence des tumeurs, de l’équipement d’acquisition d’image et des paramètres d’acquisition, et de la variabilité entre les patients. Les tumeurs varient en type, taille, emplacement et quantité; le reste de l’image varie en raison des différences anatomiques entre les patients, d’une chirurgie antérieure ou d’une thérapie ablative, de différences dans l’amélioration du contraste des tissus et des artefacts d’image. De plus, les protocoles d’acquisition du scanner varient considérablement entre les cliniques et les caractéristiques de l’image varient selon le modèle du scanner. En raison de toutes ces variabilités, un modèle de segmentation doit être suffisamment flexible pour apprendre les caractéristiques générales des données. L’avènement des réseaux profonds de neurones à convolution (convolutional neural networks, CNN) a permis une classification exacte et précise des images hautement variables et, par extension, une segmentation de haute qualité des images. Cependant, ces modèles doivent être formés sur d’énormes quantités de données étiquetées. Cette contrainte est particulièrement difficile dans le contexte de la segmentation des images médicales, car le nombre de segmentations pouvant être produites est limité dans la pratique par la nécessité d’employer des opérateurs experts pour réaliser un tel étiquetage. De plus, les variabilités d’intérêt dans les images médicales semblent suivre une distribution à longue traîne, ce qui signifie qu’un nombre particulièrement important de données utilisées pour l’entraînement peut être nécessaire pour fournir un échantillon suffisant de chaque type de variabilité à un CNN. Cela démontre la nécessité de développer des stratégies pour la formation de ces modèles avec des segmentations de vérité-terrain disponibles limitées.----------ABSTRACT: The delineation (segmentation) of malignant tumours in medical images is important for cancer diagnosis, the planning of targeted treatments, and the tracking of cancer progression and treatment response. However, although manual segmentation of medical images is accurate, it is time consuming, requires expert operators, and is often impractical with large datasets. This motivates the need for training automated segmentation. However, automated segmentation of tumours is particularly challenging due to variability in tumour appearance, image acquisition equipment and acquisition parameters, and variability across patients. Tumours vary in type, size, location, and quantity; the rest of the image varies due to anatomical differences between patients, prior surgery or ablative therapy, differences in contrast enhancement of tissues, and image artefacts. Furthermore, scanner acquisition protocols vary considerably between clinical sites and image characteristics vary according to the scanner model. Due to all of these variabilities, a segmentation model must be flexible enough to learn general features from the data. The advent of deep convolutional neural networks (CNN) allowed for accurate and precise classification of highly variable images and, by extension, of high quality segmentation images. However, these models must be trained on enormous quantities of labeled data. This constraint is particularly challenging in the context of medical image segmentation because the number of segmentations that can be produced is limited in practice by the need to employ expert operators to do such labeling. Furthermore, the variabilities of interest in medical images appear to follow a long tail distribution, meaning a particularly large amount of training data may be required to provide a sufficient sample of each type of variability to a CNN. This motivates the need to develop strategies for training these models with limited ground truth segmentations available
    corecore