1,611 research outputs found

    Interactive Medical Image Segmentation using Deep Learning with Image-specific Fine-tuning

    Get PDF
    Convolutional neural networks (CNNs) have achieved state-of-the-art performance for automatic medical image segmentation. However, they have not demonstrated sufficiently accurate and robust results for clinical use. In addition, they are limited by the lack of image-specific adaptation and the lack of generalizability to previously unseen object classes. To address these problems, we propose a novel deep learning-based framework for interactive segmentation by incorporating CNNs into a bounding box and scribble-based segmentation pipeline. We propose image-specific fine-tuning to make a CNN model adaptive to a specific test image, which can be either unsupervised (without additional user interactions) or supervised (with additional scribbles). We also propose a weighted loss function considering network and interaction-based uncertainty for the fine-tuning. We applied this framework to two applications: 2D segmentation of multiple organs from fetal MR slices, where only two types of these organs were annotated for training; and 3D segmentation of brain tumor core (excluding edema) and whole brain tumor (including edema) from different MR sequences, where only tumor cores in one MR sequence were annotated for training. Experimental results show that 1) our model is more robust to segment previously unseen objects than state-of-the-art CNNs; 2) image-specific fine-tuning with the proposed weighted loss function significantly improves segmentation accuracy; and 3) our method leads to accurate results with fewer user interactions and less user time than traditional interactive segmentation methods.Comment: 11 pages, 11 figure

    A Survey on Deep Learning in Medical Image Analysis

    Full text link
    Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks and provide concise overviews of studies per application area. Open challenges and directions for future research are discussed.Comment: Revised survey includes expanded discussion section and reworked introductory section on common deep architectures. Added missed papers from before Feb 1st 201

    3D Convolutional Neural Networks for Tumor Segmentation using Long-range 2D Context

    Full text link
    We present an efficient deep learning approach for the challenging task of tumor segmentation in multisequence MR images. In recent years, Convolutional Neural Networks (CNN) have achieved state-of-the-art performances in a large variety of recognition tasks in medical imaging. Because of the considerable computational cost of CNNs, large volumes such as MRI are typically processed by subvolumes, for instance slices (axial, coronal, sagittal) or small 3D patches. In this paper we introduce a CNN-based model which efficiently combines the advantages of the short-range 3D context and the long-range 2D context. To overcome the limitations of specific choices of neural network architectures, we also propose to merge outputs of several cascaded 2D-3D models by a voxelwise voting strategy. Furthermore, we propose a network architecture in which the different MR sequences are processed by separate subnetworks in order to be more robust to the problem of missing MR sequences. Finally, a simple and efficient algorithm for training large CNN models is introduced. We evaluate our method on the public benchmark of the BRATS 2017 challenge on the task of multiclass segmentation of malignant brain tumors. Our method achieves good performances and produces accurate segmentations with median Dice scores of 0.918 (whole tumor), 0.883 (tumor core) and 0.854 (enhancing core). Our approach can be naturally applied to various tasks involving segmentation of lesions or organs.Comment: Submitted to the journal Computerized Medical Imaging and Graphic

    Automated liver tissues delineation based on machine learning techniques: A survey, current trends and future orientations

    Get PDF
    There is no denying how machine learning and computer vision have grown in the recent years. Their highest advantages lie within their automation, suitability, and ability to generate astounding results in a matter of seconds in a reproducible manner. This is aided by the ubiquitous advancements reached in the computing capabilities of current graphical processing units and the highly efficient implementation of such techniques. Hence, in this paper, we survey the key studies that are published between 2014 and 2020, showcasing the different machine learning algorithms researchers have used to segment the liver, hepatic-tumors, and hepatic-vasculature structures. We divide the surveyed studies based on the tissue of interest (hepatic-parenchyma, hepatic-tumors, or hepatic-vessels), highlighting the studies that tackle more than one task simultaneously. Additionally, the machine learning algorithms are classified as either supervised or unsupervised, and further partitioned if the amount of works that fall under a certain scheme is significant. Moreover, different datasets and challenges found in literature and websites, containing masks of the aforementioned tissues, are thoroughly discussed, highlighting the organizers original contributions, and those of other researchers. Also, the metrics that are used excessively in literature are mentioned in our review stressing their relevancy to the task at hand. Finally, critical challenges and future directions are emphasized for innovative researchers to tackle, exposing gaps that need addressing such as the scarcity of many studies on the vessels segmentation challenge, and why their absence needs to be dealt with in an accelerated manner.Comment: 41 pages, 4 figures, 13 equations, 1 table. A review paper on liver tissues segmentation based on automated ML-based technique

    UNet++: A Nested U-Net Architecture for Medical Image Segmentation

    Full text link
    In this paper, we present UNet++, a new, more powerful architecture for medical image segmentation. Our architecture is essentially a deeply-supervised encoder-decoder network where the encoder and decoder sub-networks are connected through a series of nested, dense skip pathways. The re-designed skip pathways aim at reducing the semantic gap between the feature maps of the encoder and decoder sub-networks. We argue that the optimizer would deal with an easier learning task when the feature maps from the decoder and encoder networks are semantically similar. We have evaluated UNet++ in comparison with U-Net and wide U-Net architectures across multiple medical image segmentation tasks: nodule segmentation in the low-dose CT scans of chest, nuclei segmentation in the microscopy images, liver segmentation in abdominal CT scans, and polyp segmentation in colonoscopy videos. Our experiments demonstrate that UNet++ with deep supervision achieves an average IoU gain of 3.9 and 3.4 points over U-Net and wide U-Net, respectively.Comment: 8 pages, 3 figures, 3 tables, accepted by 4th Deep Learning in Medical Image Analysis (DLMIA) Worksho

    Effective Brain Tumor Classification Using Deep Residual Network-Based Transfer Learning

    Get PDF
    Brain tumor classification is an essential task in medical image processing that provides assistance to doctors for accurate diagnoses and treatment plans. A Deep Residual Network based Transfer Learning to a fully convoluted Convolutional Neural Network (CNN) is proposed to perform brain tumor classification of Magnetic Resonance Images (MRI) from the BRATS 2020 dataset. The dataset consists of a variety of pre-operative MRI scans to segment integrally varied brain tumors in appearance, shape, and histology, namely gliomas. A Deep Residual Network (ResNet-50) to a fully convoluted CNN is proposed to perform tumor classification from MRI of the BRATS dataset. The 50-layered residual network deeply convolutes the multi-category of tumor images in classification tasks using convolution block and identity block. Limitations such as Limited accuracy and complexity of algorithms in CNN-based ME-Net, and classification issues in YOLOv2 inceptions are resolved by the proposed model in this work. The trained CNN learns boundary and region tasks and extracts successful contextual information from MRI scans with minimal computation cost. The tumor segmentation and classification are performed in one step using a U-Net architecture, which helps retain spatial features of the image. The multimodality fusion is implemented to perform classification and regression tasks by integrating dataset information. The dice scores of the proposed model for Enhanced Tumor (ET), Whole Tumor (WT), and Tumor Core (TC) are 0.88, 0.97, and 0.90 on the BRATS 2020 dataset, and also resulted in 99.94% accuracy, 98.92% sensitivity, 98.63% specificity, and 99.94% precision
    corecore