3,726 research outputs found

    Automatic Brain Tumor Segmentation by Deep Convolutional Networks and Graph Cuts

    Get PDF
    Brain tumor segmentation in magnetic resonance imaging (MRI) is helpful for diagnostics, growth rate prediction, tumor volume measurements and treatment planning of brain tumor. The difficulties for brain tumor segmentation are mainly due to high variation of brain tumors in size, shape, regularity, location, and their heterogeneous appearance (e.g., contrast, intensity and texture variation for different tumors). Due to recent advances in deep convolutional neural networks for semantic image segmentation, automatic brain tumor segmentation is a promising research direction. This thesis investigates automatic brain tumor segmentation by combining deep convolutional neural network with regularization by a graph cut. We investigate several deep convolutional network structures that have been successful in semantic and medical image segmentation. Since the tumor pixels account for a very small portion in the whole brain slice, segmenting the tumor from the background is a highly imbalanced dense prediction task. We use a loss function that takes the imbalance of the training data into consideration. In the second part of the thesis, we improve the segmentation results of a deep neural network by using optimization framework with graph cuts. The graph cut framework can improve segmentation boundaries by making them more smooth and regular. The main issue when using the segmentation results of convolutional neural networks for the graph cut optimization framework is to convert tumor probabilities learned by a convolutional network into data terms. We investigate several possible ways that take into consideration the segmentation artifacts by convolutional neural networks. In experiments, we present the segmentation results by different deep convolutional neural network structures, e.g., fully convolutional neural network, dilated residual network and UNet. Also, we compare the combination of U-Net with different data terms for graph cut regularization to improve the neural network segmentation results. Experimental results show that the U-Net performs best with the intersection over union (IoU) for tumors of 0.7286. The IoU for tumors is improved to 0.7530 by training on three slices. Also, the IoU for tumors is improved to 0.7713 by U-Net with balanced loss function. The IoU for tumors is further improved to 0.8078 by graph cut regularization

    Brain Tumor Segmentation with Deep Neural Networks

    Full text link
    In this paper, we present a fully automatic brain tumor segmentation method based on Deep Neural Networks (DNNs). The proposed networks are tailored to glioblastomas (both low and high grade) pictured in MR images. By their very nature, these tumors can appear anywhere in the brain and have almost any kind of shape, size, and contrast. These reasons motivate our exploration of a machine learning solution that exploits a flexible, high capacity DNN while being extremely efficient. Here, we give a description of different model choices that we've found to be necessary for obtaining competitive performance. We explore in particular different architectures based on Convolutional Neural Networks (CNN), i.e. DNNs specifically adapted to image data. We present a novel CNN architecture which differs from those traditionally used in computer vision. Our CNN exploits both local features as well as more global contextual features simultaneously. Also, different from most traditional uses of CNNs, our networks use a final layer that is a convolutional implementation of a fully connected layer which allows a 40 fold speed up. We also describe a 2-phase training procedure that allows us to tackle difficulties related to the imbalance of tumor labels. Finally, we explore a cascade architecture in which the output of a basic CNN is treated as an additional source of information for a subsequent CNN. Results reported on the 2013 BRATS test dataset reveal that our architecture improves over the currently published state-of-the-art while being over 30 times faster

    Glioma Diagnosis Aid through CNNs and Fuzzy-C Means for MRI

    Get PDF
    Glioma is a type of brain tumor that causes mortality in many cases. Early diagnosis is an important factor. Typically, it is detected through MRI and then either a treatment is applied, or it is removed through surgery. Deep-learning techniques are becoming popular in medical applications and image-based diagnosis. Convolutional Neural Networks are the preferred architecture for object detection and classification in images. In this paper, we present a study to evaluate the efficiency of using CNNs for diagnosis aids in glioma detection and the improvement of the method when using a clustering method (Fuzzy C-means) for preprocessing the input MRI dataset. Results offered an accuracy improvement from 0.77 to 0.81 when using Fuzzy C-Means.Ministerio de Economía y Competitividad TEC2016-77785-

    Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images

    Get PDF
    Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL maps are derived through computational staining using a convolutional neural network trained to classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and correlation with overall survival. TIL map structural patterns were grouped using standard histopathological parameters. These patterns are enriched in particular T cell subpopulations derived from molecular measures. TIL densities and spatial structure were differentially enriched among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for the TCGA image archives with insights into the tumor-immune microenvironment

    Personalized Pancreatic Tumor Growth Prediction via Group Learning

    Full text link
    Tumor growth prediction, a highly challenging task, has long been viewed as a mathematical modeling problem, where the tumor growth pattern is personalized based on imaging and clinical data of a target patient. Though mathematical models yield promising results, their prediction accuracy may be limited by the absence of population trend data and personalized clinical characteristics. In this paper, we propose a statistical group learning approach to predict the tumor growth pattern that incorporates both the population trend and personalized data, in order to discover high-level features from multimodal imaging data. A deep convolutional neural network approach is developed to model the voxel-wise spatio-temporal tumor progression. The deep features are combined with the time intervals and the clinical factors to feed a process of feature selection. Our predictive model is pretrained on a group data set and personalized on the target patient data to estimate the future spatio-temporal progression of the patient's tumor. Multimodal imaging data at multiple time points are used in the learning, personalization and inference stages. Our method achieves a Dice coefficient of 86.8% +- 3.6% and RVD of 7.9% +- 5.4% on a pancreatic tumor data set, outperforming the DSC of 84.4% +- 4.0% and RVD 13.9% +- 9.8% obtained by a previous state-of-the-art model-based method
    corecore