3,936 research outputs found

    A Survey on Deep Learning in Medical Image Analysis

    Full text link
    Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks and provide concise overviews of studies per application area. Open challenges and directions for future research are discussed.Comment: Revised survey includes expanded discussion section and reworked introductory section on common deep architectures. Added missed papers from before Feb 1st 201

    Single-breath-hold photoacoustic computed tomography of the breast

    Get PDF
    We have developed a single-breath-hold photoacoustic computed tomography (SBH-PACT) system to reveal detailed angiographic structures in human breasts. SBH-PACT features a deep penetration depth (4 cm in vivo) with high spatial and temporal resolutions (255 µm in-plane resolution and a 10 Hz 2D frame rate). By scanning the entire breast within a single breath hold (~15 s), a volumetric image can be acquired and subsequently reconstructed utilizing 3D back-projection with negligible breathing-induced motion artifacts. SBH-PACT clearly reveals tumors by observing higher blood vessel densities associated with tumors at high spatial resolution, showing early promise for high sensitivity in radiographically dense breasts. In addition to blood vessel imaging, the high imaging speed enables dynamic studies, such as photoacoustic elastography, which identifies tumors by showing less compliance. We imaged breast cancer patients with breast sizes ranging from B cup to DD cup, and skin pigmentations ranging from light to dark. SBH-PACT identified all the tumors without resorting to ionizing radiation or exogenous contrast, posing no health risks

    Quantitative Analysis of Dynamic Contrast-Enhanced Magnetic Resonance Breast Images: Optimization of the Time-to-Peak as a Diagnostic Indicator

    Get PDF
    Dynamic contrast-enhanced MRI (DCE-MRI) has been widely used in the diagnosis of breast cancer and as an aid in the management of this disease. Although DCE-MRI has a high sensitivity for the detection of malignant breast lesions, distinguishing malignant from benign lesions is more challenging for this method and may depend to some extent on how the images are analysed. Although clinical assessment of these images typically involves qualitative assessment by an expert, there is growing interest in the development of quantitative and automated methods to assist the expert assessment. This thesis involves the quantitative analysis of a particular empirical feature of the time evolution of the DCE-MRI signal known as the time-to-peak ( 7 ^ ) . In particular, this thesis investigates die feasibility of applying measures sensitive to 7 ^ heterogeneity as indicators for malignancy in breast DCE-MRI. Breast lesions in this study were automatically segmented by K-means clustering. Voxel- by-voxel 7\u27peak values were extracted using an empirical model. The / 1th percentile values (p = 10, 20...) of the 7’peak distribution within each lesion, as well as the fractional and absolute hot spot volumes were determined, where hot spot volume refers to the volume of tissue with 7 ^ less than a threshold value. Using the area under the receiver operating characteristic curve (AUC), these measures were tested as indicators for differentiating fibroadenomas from invasive lesions and from ductal carcinoma in situ, as well as for differentiating non-fibroadenoma benign lesions from these malignant lesions. For differentiating fibroadenomas from malignant lesions, low percentile values (p = 10) provided high diagnostic performance. At the optimal threshold (3 min), the hot spot volume provided high diagnostic performance. However, non-fibroadenoma benign lesions were quite difficult to distinguish from malignant lesions. This thesis demonstrates that quantitative analysis of the 7’peak distribution can be optimized for diagnostic performance providing indicators sensitive to intra-lesion r peak heterogeneity

    Multimodal Magnetic Resonance and Near-Infrared-Fluorescent Imaging of Intraperitoneal Ovarian Cancer Using a Dual-Mode-Dual-Gadolinium Liposomal Contrast Agent.

    Get PDF
    The degree of tumor removal at surgery is a major factor in predicting outcome for ovarian cancer. A single multimodality agent that can be used with magnetic resonance (MR) for staging and pre-surgical planning, and with optical imaging to aid surgical removal of tumors, would present a new paradigm for ovarian cancer. We assessed whether a dual-mode, dual-Gadolinium (DM-Dual-Gd-ICG) contrast agent can be used to visualize ovarian tumors in the peritoneal cavity by multimodal MR and near infra-red imaging (NIR). Intraperitoneal ovarian tumors (Hey-A8 or OVCAR3) in mice enhanced on MR two days after intravenous DM-Dual Gd-ICG injection compared to controls (SNR, CNR, p < 0.05, n = 6). As seen on open abdomen and excised tumors views and confirmed by optical radiant efficiency measurement, Hey-A8 or OVCAR3 tumors from animals injected with DM-Dual Gd-ICG had increased fluorescence (p < 0.05, n = 6). This suggests clinical potential to localize ovarian tumors by MR for staging and surgical planning, and, by NIR at surgery for resection

    Investigating the role of machine learning and deep learning techniques in medical image segmentation

    Get PDF
    openThis work originates from the growing interest of the medical imaging community in the application of machine learning techniques and, from deep learning to improve the accuracy of cancerscreening. The thesis is structured into two different tasks. In the first part, magnetic resonance images were analysed in order to support clinical experts in the treatment of patients with brain tumour metastases (BM). The main topic related to this study was to investigate whether BM segmentation may be approached successfully by two supervised ML classifiers belonging to feature-based and deep learning approaches, respectively. SVM and V-Net Convolutional Neural Network model are selected from the literature as representative of the two approaches. The second task related to this thesisis illustrated the development of a deep learning study aimed to process and classify lesions in mammograms with the use of slender neural networks. Mammography has a central role in screening and diagnosis of breast lesions. Deep Convolutional Neural Networks have shown a great potentiality to address the issue of early detection of breast cancer with an acceptable level of accuracy and reproducibility. A traditional convolution network was compared with a novel one obtained making use of much more efficient depth wise separable convolution layers. As a final goal to integrate the system developed in clinical practice, for both fields studied, all the Medical Imaging and Pattern Recognition algorithmic solutions have been integrated into a MATLAB® software packageopenInformatica e matematica del calcologonella gloriaGonella, Glori
    corecore