31 research outputs found

    Model and Appearance Based Analysis of Neuronal Morphology from Different Microscopy Imaging Modalities

    Get PDF
    The neuronal morphology analysis is key for understanding how a brain works. This process requires the neuron imaging system with single-cell resolution; however, there is no feasible system for the human brain. Fortunately, the knowledge can be inferred from the model organism, Drosophila melanogaster, to the human system. This dissertation explores the morphology analysis of Drosophila larvae at single-cell resolution in static images and image sequences, as well as multiple microscopy imaging modalities. Our contributions are on both computational methods for morphology quantification and analysis of the influence of the anatomical aspect. We develop novel model-and-appearance-based methods for morphology quantification and illustrate their significance in three neuroscience studies. Modeling of the structure and dynamics of neuronal circuits creates understanding about how connectivity patterns are formed within a motor circuit and determining whether the connectivity map of neurons can be deduced by estimations of neuronal morphology. To address this problem, we study both boundary-based and centerline-based approaches for neuron reconstruction in static volumes. Neuronal mechanisms are related to the morphology dynamics; so the patterns of neuronal morphology changes are analyzed along with other aspects. In this case, the relationship between neuronal activity and morphology dynamics is explored to analyze locomotion procedures. Our tracking method models the morphology dynamics in the calcium image sequence designed for detecting neuronal activity. It follows the local-to-global design to handle calcium imaging issues and neuronal movement characteristics. Lastly, modeling the link between structural and functional development depicts the correlation between neuron growth and protein interactions. This requires the morphology analysis of different imaging modalities. It can be solved using the part-wise volume segmentation with artificial templates, the standardized representation of neurons. Our method follows the global-to-local approach to solve both part-wise segmentation and registration across modalities. Our methods address common issues in automated morphology analysis from extracting morphological features to tracking neurons, as well as mapping neurons across imaging modalities. The quantitative analysis delivered by our techniques enables a number of new applications and visualizations for advancing the investigation of phenomena in the nervous system

    Hieroglyph: Hierarchical Glia Graph Skeletonization and Matching

    Get PDF
    Automatic 3D reconstruction of glia morphology is a powerful tool necessary for investigating the role of microglia in neurological disorders in the central nervous system. Current glia skeleton reconstruction techniques fail to capture an accurate tracing of the processes over time, useful for the study of the microglia motility and morphology in the brain during healthy and diseased states. We propose Hieroglyph, a fully automatic temporal 3D skeleton reconstruction algorithm for glia imaged via 3D multiphoton microscopy. Hieroglyph yielded a 21% performance increase compared to state of the art automatic skeleton reconstruction methods and outperforms the state of the art in different measures of consistency on datasets of 3D images of microglia. The results from this method provide a 3D graph and digital reconstruction of glia useful for a myriad of morphological analyses that could impact studies in brain immunology and disease.Comment: submitted to IEEE International Conference on Image Processing, 201

    Learning Approach to Delineation of Curvilinear Structures in 2D and 3D Images

    Get PDF
    Detection of curvilinear structures has long been of interest due to its wide range of applications. Large amounts of imaging data could be readily used in many fields, but it is practically not possible to analyze them manually. Hence, the need for automated delineation approaches. In the recent years Computer Vision witnessed a paradigm shift from mathematical modelling to data-driven methods based on Machine Learning. This led to improvements in performance and robustness of the detection algorithms. Nonetheless, most Machine Learning methods are general-purpose and they do not exploit the specificity of the delineation problem. In this thesis, we present learning methods suited for this task and we apply them to various kinds of microscopic and natural images, proving the general applicability of the presented solutions. First, we introduce a topology loss - a new training loss term, which captures higher-level features of curvilinear networks such as smoothness, connectivity and continuity. This is in contrast to most Deep Learning segmentation methods that do not take into account the geometry of the resulting prediction. In order to compute the new loss term, we extract topology features of prediction and ground-truth using a pre-trained network, whose filters are activated by structures at different scales and orientations. We show that this approach yields better results in terms of conventional segmentation metrics and overall topology of the resulting delineation. Although segmentation of curvilinear structures provides useful information, it is not always sufficient. In many cases, such as neuroscience and cartography, it is crucial to estimate the network connectivity. In order to find the graph representation of the structure depicted in the image, we propose an approach for joint segmentation and connection classification. Apart from pixel probabilities, this approach also returns the likelihood of a proposed path being a part of the reconstructed network. We show that segmentation and path classification are closely related tasks and can benefit from the synergy. The aforementioned methods rely on Machine Learning, which requires significant amounts of annotated ground-truth data to train models. The labelling process often requires expertise, it is costly and tiresome. To alleviate this problem, we introduce an Active Learning method that significantly decreases the time spent on annotating images. It queries the annotator only about the most informative examples, in this case the hypothetical paths belonging to the structure of interest. Contrary to conventional Active Learning methods, our approach exploits local consistency of linear paths to pick the ones that stand out from their neighborhood. Our final contribution is a method suited for both Active Learning and proofreading the result, which often requires more time than the automated delineation itself. It investigates edges of the delineation graph and determines the ones that are especially significant for the global reconstruction by perturbing their weights. Our Active Learning and proofreading strategies are combined with a new efficient formulation of an optimal subgraph computation and reduce the annotation effort by up to 80%

    Methods for Automated Neuron Image Analysis

    Get PDF
    Knowledge of neuronal cell morphology is essential for performing specialized analyses in the endeavor to understand neuron behavior and unravel the underlying principles of brain function. Neurons can be captured with a high level of detail using modern microscopes, but many neuroscientific studies require a more explicit and accessible representation than offered by the resulting images, underscoring the need for digital reconstruction of neuronal morphology from the images into a tree-like graph structure. This thesis proposes new computational methods for automated detection and reconstruction of neurons from fluorescence microscopy images. Specifically, the successive chapters describe and evaluate original solutions to problems such as the detection of landmarks (critical points) of the neuronal tree, complete tracing and reconstruction of the tree, and the detection of regions containing neurons in high-content screens

    Semi-Automated Reconstruction of Curvilinear Structures in Noisy 2D images and 3D image stacks

    Get PDF
    We propose a new approach to semi-automated delineation of curvilinear structures in a wide range of imaging modalities. Earlier approaches lack robustness to imaging noise, do not provide radius estimates for the structures and operate only on single channel images. In contrast, ours makes use of the color information, when available, and generates accurate centreline location and radius estimates with minimal supervision. We demonstrate this on a wide range of datasets ranging from a 2D dataset of aerial images to 3D micrographs of neurites

    Automated Neuron Reconstruction from 3D Fluorescence Microscopy Images Using Sequential Monte Carlo Estimation

    Get PDF
    Microscopic images of neuronal cells provide essential structural information about the key constituents of the brain and form the basis of many neuroscientific studies. Computational analyses of the morphological properties of the captured neurons require first converting the structural information into digital tree-like reconstructions. Many dedicated computational methods and corresponding software tools have been and are continuously being developed with the aim to automate this step while achieving human-comparable reconstruction accuracy. This pursuit is hampered by the immense diversity and intricacy of neuronal morphologies as well as the often low quality and ambiguity of the images. Here we present a novel method we developed in an effort to improve the robustness of digital reconstruction against these complicating factors. The method is based on probabilistic filtering by sequential Monte Carlo estimation and uses prediction and update models designed specifically for tracing neuronal branches in microscopic image stacks. Moreover, it uses multiple probabilistic traces to arrive at a more robust, ensemble reconstruction. The proposed method was evaluated on fluorescence microscopy image stacks of single neurons and dense neuronal networks with expert manual annotations serving as the gold standard, as well as on synthetic images with known ground truth. The results indicate that our method performs well under varying experimental conditions and compares favorably to state-of-the-art alternative methods

    Reconstructing Curvilinear Networks using Path Classifiers and Integer Programming

    Get PDF
    We propose a novel Bayesian approach to automated delineation of curvilinear structures that form complex and potentially loopy networks. By representing the image data as a graph of potential paths, we first show how to weight these paths using discriminatively-trained classifiers that are both robust and generic enough to be applied to very different imaging modalities. We then present an Integer Programming approach to finding the optimal subset of paths, subject to structural and topological constraints that eliminate implausible solutions. Unlike earlier approaches that assume a tree topology for the networks, ours explicitly models the fact that the networks may contain loops, and can reconstruct both cyclic and acyclic ones. We demonstrate the effectiveness of our approach on a variety of challenging datasets including aerial images of road networks and micrographs of neural arbors, and show that it outperforms state-of-the-art techniques
    corecore