88,053 research outputs found

    Numerical product design: Springback prediction, compensation and optimization

    Get PDF
    Numerical simulations are being deployed widely for product design. However, the accuracy of the numerical tools is not yet always sufficiently accurate and reliable. This article focuses on the current state and recent developments in different stages of product design: springback prediction, springback compensation and optimization by finite element (FE) analysis. To improve the springback prediction by FE analysis, guidelines regarding the mesh discretization are provided and a new through-thickness integration scheme for shell elements is launched. In the next stage of virtual product design the product is compensated for springback. Currently, deformations due to springback are manually compensated in the industry. Here, a procedure to automatically compensate the tool geometry, including the CAD description, is presented and it is successfully applied to an industrial automotive part. The last stage in virtual product design comprises optimization. This article presents an optimization scheme which is capable of designing optimal and robust metal forming processes efficiently

    Control of Solar Power Systems: a survey

    Get PDF
    9th International Symposium on Dynamics and Controlof Process Systems (DYCOPS 2010)Leuven, Belgium, July 5-7, 20109This paper deals with the main control problems found in solar power systems and the solutions proposed in literature. The paper first describes the main solar power technologies, its development status and then describes the main challenges encountered when controlling solar power systems.Ministerio de Ciencia y Tecnología DPI2008-05818Ministerio de Ciencia y Tecnología DPI2007-66718-C04-04Junta de Andalucía P07-TEP-0272

    AstraLux: the Calar Alto Lucky Imaging Camera

    Full text link
    AstraLux is the Lucky Imaging camera for the Calar Alto 2.2-m telescope, based on an electron-multiplying high speed CCD. By selecting only the best 1-10% of several thousand short exposure frames, AstraLux provides nearly diffraction limited imaging capabilities in the SDSS i' and z' filters over a field of view of 24x24 arcseconds. By choosing commercially available components wherever possible, the instrument could be built in short time and at comparably low cost. We present the instrument design, the data reduction pipeline, and summarise the performance and characteristicsComment: 12 pages, 7 figures, to appear in "Ground-based and Airborne Instrumentation for Astronomy II" SPIE conference, Marseille, 23-28 June 200

    A Moving Boundary Flux Stabilization Method for Cartesian Cut-Cell Grids using Directional Operator Splitting

    Full text link
    An explicit moving boundary method for the numerical solution of time-dependent hyperbolic conservation laws on grids produced by the intersection of complex geometries with a regular Cartesian grid is presented. As it employs directional operator splitting, implementation of the scheme is rather straightforward. Extending the method for static walls from Klein et al., Phil. Trans. Roy. Soc., A367, no. 1907, 4559-4575 (2009), the scheme calculates fluxes needed for a conservative update of the near-wall cut-cells as linear combinations of standard fluxes from a one-dimensional extended stencil. Here the standard fluxes are those obtained without regard to the small sub-cell problem, and the linear combination weights involve detailed information regarding the cut-cell geometry. This linear combination of standard fluxes stabilizes the updates such that the time-step yielding marginal stability for arbitrarily small cut-cells is of the same order as that for regular cells. Moreover, it renders the approach compatible with a wide range of existing numerical flux-approximation methods. The scheme is extended here to time dependent rigid boundaries by reformulating the linear combination weights of the stabilizing flux stencil to account for the time dependence of cut-cell volume and interface area fractions. The two-dimensional tests discussed include advection in a channel oriented at an oblique angle to the Cartesian computational mesh, cylinders with circular and triangular cross-section passing through a stationary shock wave, a piston moving through an open-ended shock tube, and the flow around an oscillating NACA 0012 aerofoil profile.Comment: 30 pages, 27 figures, 3 table

    A numerical study of detonation diffraction

    Get PDF
    An investigation of detonation diffraction through an abrupt area change has been carried out via a set of two-dimensional numerical simulations parameterized by the activation energy of the reactant. Our analysis is specialized to a reactive mixture with a perfect gas equation of state and a single-step reaction in the Arrhenius form. Lagrangian particles are injected into the flow as a diagnostic tool for identifying the dominant terms in the equation that describes the temperature rate of change of a fluid element, expressed in the shock-based reference system. When simplified, this equation provides insight into the competition between the energy release rate and the expansion rate behind the diffracting front. The mechanism of spontaneous generation of transverse waves along the diffracting front is carefully analysed and related to the sensitivity of the reaction rate to temperature. We study in detail three highly resolved cases of detonation diffraction that illustrate different types of behaviour, super-, sub- and near-critical diffraction

    Control of a Solar Energy Systems

    Get PDF
    8th IFAC Symposium on Advanced Control of Chemical ProcessesThe International Federation of Automatic Control Singapore, July 10-13This work deals with the main control problems found in solar power systems and the solutions proposed in literature. The paper first describes the main solar power technologies, its development status and then describes the main challenges encountered when controlling solar power systems. While in other power generating processes, the main source of energy can be manipulated, in solar energy systems, the main source of power which is solar radiation cannot be manipulated and furthermore it changes in a seasonal and on a daily base acting as a disturbance when considering it from a control point of view. Solar plants have all the characteristics needed for using industrial electronics and advanced control strategies able to cope with changing dynamics, nonlinearities and uncertainties.Ministerio de Ciencia e Innovación PI2008-05818Ministerio de Ciencia e Innovación DPI2010-21589-C05-01/04Junta de Andalucía P07-TEP-0272

    Microwave power transmission system studies. Volume 2: Introduction, organization, environmental and spaceborne systems analyses

    Get PDF
    Introduction, organization, analyses, conclusions, and recommendations for each of the spaceborne subsystems are presented. Environmental effects - propagation analyses are presented with appendices covering radio wave diffraction by random ionospheric irregularities, self-focusing plasma instabilities and ohmic heating of the D-region. Analyses of dc to rf conversion subsystems and system considerations for both the amplitron and the klystron are included with appendices for the klystron covering cavity circuit calculations, output power of the solenoid-focused klystron, thermal control system, and confined flow focusing of a relativistic beam. The photovoltaic power source characteristics are discussed as they apply to interfacing with the power distribution flow paths, magnetic field interaction, dc to rf converter protection, power distribution including estimates for the power budget, weights, and costs. Analyses for the transmitting antenna consider the aperture illumination and size, with associated efficiencies and ground power distributions. Analyses of subarray types and dimensions, attitude error, flatness, phase error, subarray layout, frequency tolerance, attenuation, waveguide dimensional tolerances, mechanical including thermal considerations are included. Implications associated with transportation, assembly and packaging, attitude control and alignment are discussed. The phase front control subsystem, including both ground based pilot signal driven adaptive and ground command approaches with their associated phase errors, are analyzed
    corecore