378 research outputs found

    A Truthful Mechanism for the Generalized Assignment Problem

    Full text link
    We propose a truthful-in-expectation, (1βˆ’1/e)(1-1/e)-approximation mechanism for a strategic variant of the generalized assignment problem (GAP). In GAP, a set of items has to be optimally assigned to a set of bins without exceeding the capacity of any singular bin. In the strategic variant of the problem we study, values for assigning items to bins are the private information of bidders and the mechanism should provide bidders with incentives to truthfully report their values. The approximation ratio of the mechanism is a significant improvement over the approximation ratio of the existing truthful mechanism for GAP. The proposed mechanism comprises a novel convex optimization program as the allocation rule as well as an appropriate payment rule. To implement the convex program in polynomial time, we propose a fractional local search algorithm which approximates the optimal solution within an arbitrarily small error leading to an approximately truthful-in-expectation mechanism. The presented algorithm improves upon the existing optimization algorithms for GAP in terms of simplicity and runtime while the approximation ratio closely matches the best approximation ratio given for GAP when all inputs are publicly known.Comment: 18 pages, Earlier version accepted at WINE 201

    Reallocation Mechanisms

    Full text link
    We consider reallocation problems in settings where the initial endowment of each agent consists of a subset of the resources. The private information of the players is their value for every possible subset of the resources. The goal is to redistribute resources among agents to maximize efficiency. Monetary transfers are allowed, but participation is voluntary. We develop incentive-compatible, individually-rational and budget balanced mechanisms for several classic settings, including bilateral trade, partnership dissolving, Arrow-Debreu markets, and combinatorial exchanges. All our mechanisms (except one) provide a constant approximation to the optimal efficiency in these settings, even in ones where the preferences of the agents are complex multi-parameter functions

    Reducing Revenue to Welfare Maximization: Approximation Algorithms and other Generalizations

    Get PDF
    It was recently shown in [http://arxiv.org/abs/1207.5518] that revenue optimization can be computationally efficiently reduced to welfare optimization in all multi-dimensional Bayesian auction problems with arbitrary (possibly combinatorial) feasibility constraints and independent additive bidders with arbitrary (possibly combinatorial) demand constraints. This reduction provides a poly-time solution to the optimal mechanism design problem in all auction settings where welfare optimization can be solved efficiently, but it is fragile to approximation and cannot provide solutions to settings where welfare maximization can only be tractably approximated. In this paper, we extend the reduction to accommodate approximation algorithms, providing an approximation preserving reduction from (truthful) revenue maximization to (not necessarily truthful) welfare maximization. The mechanisms output by our reduction choose allocations via black-box calls to welfare approximation on randomly selected inputs, thereby generalizing also our earlier structural results on optimal multi-dimensional mechanisms to approximately optimal mechanisms. Unlike [http://arxiv.org/abs/1207.5518], our results here are obtained through novel uses of the Ellipsoid algorithm and other optimization techniques over {\em non-convex regions}
    • …
    corecore