605 research outputs found

    Incentive Mechanisms for Hierarchical Spectrum Markets

    Full text link
    In this paper, we study spectrum allocation mechanisms in hierarchical multi-layer markets which are expected to proliferate in the near future based on the current spectrum policy reform proposals. We consider a setting where a state agency sells spectrum channels to Primary Operators (POs) who subsequently resell them to Secondary Operators (SOs) through auctions. We show that these hierarchical markets do not result in a socially efficient spectrum allocation which is aimed by the agency, due to lack of coordination among the entities in different layers and the inherently selfish revenue-maximizing strategy of POs. In order to reconcile these opposing objectives, we propose an incentive mechanism which aligns the strategy and the actions of the POs with the objective of the agency, and thus leads to system performance improvement in terms of social welfare. This pricing-based scheme constitutes a method for hierarchical market regulation. A basic component of the proposed incentive mechanism is a novel auction scheme which enables POs to allocate their spectrum by balancing their derived revenue and the welfare of the SOs.Comment: 9 page

    Spectrum Trading: An Abstracted Bibliography

    Full text link
    This document contains a bibliographic list of major papers on spectrum trading and their abstracts. The aim of the list is to offer researchers entering this field a fast panorama of the current literature. The list is continually updated on the webpage \url{http://www.disp.uniroma2.it/users/naldi/Ricspt.html}. Omissions and papers suggested for inclusion may be pointed out to the authors through e-mail (\textit{[email protected]})

    Applications of Game Theory and Microeconomics in Cognitive Radio and Femtocell Networks

    Get PDF
    Cognitive radio networks have recently been proposed as a promising approach to overcome the serious problem of spectrum scarcity. Other emerging concept for innovative spectrum utilization is femtocells. Femtocells are low-power and short-range wireless access points installed by the end-user in residential or enterprise environments. A common feature of cognitive radio and femtocells is their two-tier nature involving primary and secondary users (PUs, SUs). While this new paradigm enables innovative alternatives to conventional spectrum management and utilization, it also brings its own technical challenges. A main challenge in cognitive radio is the design of efficient resource (spectrum) trading methods. Game and microeconomics theories provide tools for studying the strategic interactions through rationality and economic benefits between PUs and SUs for effective resource allocation. In this thesis, we investigate some efficient game theoretic and microeconomic approaches to address spectrum trading in cognitive networks. We propose two auction frameworks for shared and exclusive use models. In the first auction mechanism, we consider the shared used model in cognitive radio networks and design a spectrum trading method to maximize the total satisfaction of the SUs and revenue of the Wireless Service Provider (WSP). In the second auction mechanism, we investigate spectrum trading via auction approach for exclusive usage spectrum access model in cognitive radio networks. We consider a realistic valuation function and propose an efficient concurrent Vickrey-Clarke-Grove (VCG) mechanism for non-identical channel allocation among r-minded bidders in two different cases. The realization of cognitive radio networks in practice requires the development of effective spectrum sensing methods. A fundamental question is how much time to allocate for sensing purposes. In the literature on cognitive radio, it is commonly assumed that fixed time durations are assigned for spectrum sensing and data transmission. It is however possible to improve the network performance by finding the best tradeoff between sensing time and throughput. In this thesis, we derive an expression for the total average throughput of the SUs over time-varying fading channels. Then we maximize the total average throughput in terms of sensing time and the number of SUs assigned to cooperatively sense each channel. For practical implementation, we propose a dynamical programming algorithm for joint optimization of sensing time and the number of cooperating SUs for sensing purpose. Simulation results demonstrate that significant improvement in the throughput of SUs is achieved in the case of joint optimization. In the last part of the thesis, we further address the challenge of pricing in oligopoly market for open access femtocell networks. We propose dynamic pricing schemes based on microeconomic and game theoretic approaches such as market equilibrium, Bertrand game, multiple-leader-multiple-follower Stackelberg game. Based on our approaches, the per unit price of spectrum can be determined dynamically and mobile service providers can gain more revenue than fixed pricing scheme. Our proposed methods also provide residential customers more incentives and satisfaction to participate in open access model.1 yea

    Research on efficiency and privacy issues in wireless communication

    Get PDF
    Wireless spectrum is a limited resource that must be used efficiently. It is also a broadcast medium, hence, additional procedures are required to maintain communication over the wireless spectrum private. In this thesis, we investigate three key issues related to efficient use and privacy of wireless spectrum use. First, we propose GAVEL, a truthful short-term auction mechanism that enables efficient use of the wireless spectrum through the licensed shared access model. Second, we propose CPRecycle, an improved Orthogonal Frequency Division Multiplexing (OFDM) receiver that retrieves useful information from the cyclic prefix for interference mitigation thus improving spectral efficiency. Third and finally, we propose WiFi Glass, an attack vector on home WiFi networks to infer private information about home occupants. First we consider, spectrum auctions. Existing short-term spectrum auctions do not satisfy all the features required for a heterogeneous spectrum market. We discover that this is due to the underlying auction format, the sealed bid auction. We propose GAVEL, a truthful auction mechanism, that is based on the ascending bid auction format, that avoids the pitfalls of existing auction mechanisms that are based on the sealed bid auction format. Using extensive simulations we observe that GAVEL can achieve better performance than existing mechanisms. Second, we study the use of cyclic prefix in Orthogonal Frequency Division Multiplexing. The cyclic prefix does contain useful information in the presence of interference. We discover that while the signal of interest is redundant in the cyclic prefix, the interference component varies significantly. We use this insight to design CPRecycle, an improved OFDM receiver that is capable of using the information in the cyclic prefix to mitigate various types of interference. It improves spectral efficiency by decoding packets in the presence of interference. CPRecycle require changes to the OFDM receiver and can be deployed in most networks today. Finally, home WiFi networks are considered private when encryption is enabled using WPA2. However, experiments conducted in real homes, show that the wireless activity on the home network can be used to infer occupancy and activity states such as sleeping and watching television. With this insight, we propose WiFi Glass, an attack vector that can be used to infer occupancy and activity states (limited to three activity classes), using only the passively sniffed WiFi signal from the home environment. Evaluation with real data shows that in most of the cases, only about 15 minutes of sniffed WiFi signal is required to infer private information, highlighting the need for countermeasures

    Market-based Allocation of Local Flexibility in Smart Grids: A Mechanism Design Approach

    Get PDF
    corecore