316 research outputs found

    TIMCC: On Data Freshness in Privacy-Preserving Incentive Mechanism Design for Continuous Crowdsensing Using Reverse Auction

    Get PDF
    © 2013 IEEE. As an emerging paradigm that leverages the wisdom and efforts of the crowd, mobile crowdsensing has shown its great potential to collect distributed data. The crowd may incur such costs and risks as energy consumption, memory consumption, and privacy leakage when performing various tasks, so they may not be willing to participate in crowdsensing tasks unless they are well-paid. Hence, a proper privacy-preserving incentive mechanism is of great significance to motivate users to join, which has attracted a lot of research efforts. Most of the existing works regard tasks as one-shot tasks, which may not work very well for the type of tasks that requires continuous monitoring, e.g., WIFI signal sensing, where the WiFi signal may vary over time, and users are required to contribute continuous efforts. The incentive mechanism for continuous crowdsensing has yet to be investigated, where the corresponding tasks need continuous efforts of users, and the freshness of the sensed data is very important. In this paper, we design TIMCC, a privacy-preserving incentive mechanism for continuous crowdsensing. In contrast to most existing studies that treat tasks as one-shot tasks, we consider the tasks that require users to contribute continuous efforts, where the freshness of data is a key factor impacting the value of data, which further determines the rewards. We introduce a metric named age of data that is defined as the amount of time elapsed since the generation of the data to capture the freshness of data. We adopt the reverse auction framework to model the connection between the platform and the users. We prove that the proposed mechanism satisfies individual rationality, computational efficiency, and truthfulness. Simulation results further validate our theoretical analysis and the effectiveness of the proposed mechanism

    Crowdsourcing to Smartphones: Incentive Mechanism Design for Mobile Phone Sensing

    Get PDF
    Mobile phone sensing is a new paradigm which takes advantage of the pervasive smartphones to collect and analyze data beyond the scale of what was previously possible. In a mobile phone sensing system, the platform recruits smartphone users to provide sensing service. Existing mobile phone sensing applications and systems lack good incentive mechanisms that can attract more user participation. To address this issue, we design incentive mechanisms for mobile phone sensing. We consider two system models: the platform-centric model where the platform provides a reward shared by participating users, and the user-centric model where users have more control over the payment they will receive. For the platform-centric model, we design an incentive mechanism using a Stackelberg game, where the platform is the leader while the users are the followers. We show how to compute the unique Stackelberg Equilibrium, at which the utility of the platform is maximized, and none of the users can improve its utility by unilaterally deviating from its current strategy. For the user-centric model, we design an auction-based incentive mechanism, which is computationally efficient, individually rational, profitable, and truthful. Through extensive simulations, we evaluate the performance and validate the theoretical properties of our incentive mechanisms

    Incentive Mechanism Design in Mobile Crowdsensing Systems

    Get PDF
    In the past few years, the popularity of Mobile Crowdsensing Systems (MCSs) has been greatly prompted, in which sensory data can be ubiquitously collected and shared by mobile devices in a distributed fashion. Typically, a MCS consists of a cloud platform, sensing tasks, and mobile users equipped with mobile devices, in which the mobile users carry out sensing tasks and receive monetary rewards as compensation for resource consumption ( e.g., energy, bandwidth, and computation) and risk of privacy leakage ( e.g., location exposure). Compared with traditional mote-class sensor networks, MCSs can reduce the cost of deploying specialized sensing infrastructures and enable many applications that require resources and sensing modalities beyond the current mote-class sensor processes as today’s mobile devices (smartphones (iPhones, Sumsung Galaxy), tablets (iPad) and vehicle-embedded sensing devices (GPS)) integrate more computing, communication, and storage resources than traditional mote-class sensors. The current applications of MCSs include traffic congestion detection, wireless indoor localization, pollution monitoring, etc . There is no doubt that one of the most significant characteristics of MCSs is the active involvement of mobile users to collect and share sensory data. In this dissertation, we study the incentive mechanism design in mobile crowdsensing system with consideration of economic properties. Firstly, we investigate the problem of joining sensing task assignment and scheduling in MCSs with the following three considerations: i) partial fulfillment, ii) attribute diversity, and iii) price diversity. Then, we design a distributed auction framework to allow each task owner to independently process its local auction without collecting global information in a MCS, reducing communication cost. Next, we propose a cost-preferred auction scheme (CPAS) to assign each winning mobile user one or more sub- working time durations and a time schedule-preferred auction scheme (TPAS) to allocate each winning mobile user a continuous working time duration. Secondly, we focus on the design of an incentive mechanism for an MCS to minimize the social cost. The social cost represents the total cost of mobile devices when all tasks published by the MCS are finished. We first present the working process of a MCS, and then build an auction market for the MCS where the MCS platform acts as an auctioneer and users with mobile devices act as bidders. Depending on the different requirements of the MCS platform, we design a Vickrey-Clarke-Groves (VCG)-based auction mechanism for the continuous working pattern and a suboptimal auction mechanism for the discontinuous working pattern. Both of them can ensure that the bidding of users are processed in a truthful way and the utilities of users are maximized. Through rigorous theoretical analysis and comprehensive simulations, we can prove that these incentive mechanisms satisfy economic properties and can be implemented in reasonable time complexcity. Next, we discuss the importance of fairness and unconsciousness of MCS surveillance applications. Then, we propose offline and online incentive mechanisms with fair task scheduling based on the proportional share allocation rules. Furthermore, to have more sensing tasks done over time dimension, we relax the truthfulness and unconsciousness property requirements and design a (ε, μ)-unconsciousness online incentive mechanism. Real map data are used to validate these proposed incentive mechanisms through extensive simulations. Finally, future research topics are proposed to complete the dissertation

    Financial evaluation of SLA-based VM scheduling strategies for cloud federations

    Get PDF
    In recent years, cloud federations have gained popularity. Small as well as big cloud service providers (CSPs) join federations to reduce their costs, and also cloud management software like OpenStack offers support for federations. In a federation, individual CSPs cooperate such that they can move load to partner clouds at high peaks and possibly offer a wider range of services to their customers. Research in this area addresses the organization of such federations and strategies that CSPs can apply to increase their profit. In this paper we present the latest extensions to the FederatedCloudSim framework that considerably improve the simulation and evaluation of cloud federations. These simulations include service-level agreements (SLAs), scheduling and brokering strategies on various levels, the use of real-world cloud workload traces and a fine-grained financial evaluation using the new CloudAccount module. We use FederatedCloudSim to compare scheduling and brokering strategies on the federation level. Among them are new strategies that conduct auctions or consult a reliance factor to select an appropriate federated partner for running outsourced virtual machines. Our results show that choosing the right strategy has a significant impact on SLA compliance and revenue

    Sensing as a service: A cloud computing system for mobile phone sensing

    Get PDF
    Sensors on (or attached to) mobile phones can enable attractive sensing applications in different domains such as environmental monitoring, social networking, healthcare, etc. We introduce a new concept, Sensing-as-a-Service (S2aaS), i.e., providing sensing services using mobile phones via a cloud computing system. An S2aaS cloud should meet the following requirements: 1) It must be able to support various mobile phone sensing applications on different smartphone platforms. 2) It must be energy-efficient. 3) It must have effective incentive mechanisms that can be used to attract mobile users to participate in sensing activities. In this paper, we identify unique challenges of designing and implementing an S2aaS cloud, review existing systems and methods, present viable solutions, and point out future research directions

    Combinatorial Auction-based Mechanisms for Composite Web Service Selection

    Get PDF
    Composite service selection presents the opportunity for the rapid development of complex applications using existing web services. It refers to the problem of selecting a set of web services from a large pool of available candidates to logically compose them to achieve value-added composite services. The aim of service selection is to choose the best set of services based on the functional and non-functional (quality related) requirements of a composite service requester. The current service selection approaches mostly assume that web services are offered as single independent entities; there is no possibility for bundling. Moreover, the current research has mainly focused on solving the problem for a single composite service. There is a limited research to date on how the presence of multiple requests for composite services affects the performance of service selection approaches. Addressing these two aspects can significantly enhance the application of composite service selection approaches in the real-world. We develop new approaches for the composite web service selection problem by addressing both the bundling and multiple requests issues. In particular, we propose two mechanisms based on combinatorial auction models, where the provisioning of multiple services are auctioned simultaneously and service providers can bid to offer combinations of web services. We mapped these mechanisms to Integer Linear Programing models and conducted extensive simulations to evaluate them. The results of our experimentation show that bundling can lead to cost reductions compared to when services are offered independently. Moreover, the simultaneous consideration of a set of requests enhances the success rate of the mechanism in allocating services to requests. By considering all composite service requests at the same time, the mechanism achieves more homogenous prices which can be a determining factor for the service requester in choosing the best composite service selection mechanism to deploy

    SENSOR MANAGEMENT FOR LOCALIZATION AND TRACKING IN WIRELESS SENSOR NETWORKS

    Get PDF
    Wireless sensor networks (WSNs) are very useful in many application areas including battlefield surveillance, environment monitoring and target tracking, industrial processes and health monitoring and control. The classical WSNs are composed of large number of densely deployed sensors, where sensors are battery-powered devices with limited signal processing capabilities. In the crowdsourcing based WSNs, users who carry devices with built-in sensors are recruited as sensors. In both WSNs, the sensors send their observations regarding the target to a central node called the fusion center for final inference. With limited resources, such as limited communication bandwidth among the WSNs and limited sensor battery power, it is important to investigate algorithms which consider the trade-off between system performance and energy cost in the WSNs. The goal of this thesis is to study the sensor management problems in resource limited WSNs while performing target localization or tracking tasks. Most research on sensor management problems in classical WSNs assumes that the number of sensors to be selected is given a priori, which is often not true in practice. Moreover, sensor network design usually involves consideration of multiple conflicting objectives, such as maximization of the lifetime of the network or the inference performance, while minimizing the cost of resources such as energy, communication or deployment costs. Thus, in this thesis, we formulate the sensor management problem in a classical resource limited WSN as a multi-objective optimization problem (MOP), whose goal is to find a set of sensor selection strategies which re- veal the trade-off between the target tracking performance and the number of selected sensors to perform the task. In this part of the thesis, we propose a novel mutual information upper bound (MIUB) based sensor selection scheme, which has low computational complexity, same as the Fisher information (FI) based sensor selection scheme, and gives estimation performance similar to the mutual information (MI) based sensor selection scheme. Without knowing the number of sensors to be selected a priori, the MOP gives a set of sensor selection strategies that reveal different trade-offs between two conflicting objectives: minimization of the number of selected sensors and minimization of the gap between the performance metric (MIUB and FI) when all the sensors transmit measurements and when only the selected sensors transmit their measurements based on the sensor selection strategy. Crowdsourcing has been applied to sensing applications recently where users carrying devices with built-in sensors are allowed or even encouraged to contribute toward the inference tasks. Crowdsourcing based WSNs provide cost effectiveness since a dedicated sensing infrastructure is no longer needed for different inference tasks, also, such architectures allow ubiquitous coverage. Most sensing applications and systems assume voluntary participation of users. However, users consume their resources while participating in a sensing task, and they may also have concerns regarding their privacy. At the same time, the limitation on communication bandwidth requires proper management of the participating users. Thus, there is a need to design optimal mechanisms which perform selection of the sensors in an efficient manner as well as providing appropriate incentives to the users to motivate their participation. In this thesis, optimal mechanisms are designed for sensor management problems in crowdsourcing based WSNs where the fusion center (FC) con- ducts auctions by soliciting bids from the selfish sensors, which reflect how much they value their energy cost. Furthermore, the rationality and truthfulness of the sensors are guaranteed in our model. Moreover, different considerations are included in the mechanism design approaches: 1) the sensors send analog bids to the FC, 2) the sensors are only allowed to send quantized bids to the FC because of communication limitations or some privacy issues, 3) the state of charge (SOC) of the sensors affects the energy consumption of the sensors in the mechanism, and, 4) the FC and the sensors communicate in a two-sided market

    Value Creation through Co-Opetition in Service Networks

    Get PDF
    Well-defined interfaces and standardization allow for the composition of single Web services into value-added complex services. Such complex Web Services are increasingly traded via agile marketplaces, facilitating flexible recombination of service modules to meet heterogeneous customer demands. In order to coordinate participants, this work introduces a mechanism design approach - the co-opetition mechanism - that is tailored to requirements imposed by a networked and co-opetitive environment
    corecore