706 research outputs found

    Eliciting Truthful Data from Crowdsourced Wireless Monitoring Modules in Cloud Managed Networks

    Get PDF
    To facilitate efficient cloud managed resource allocation solutions, collection of key wireless metrics from multiple access points (APs) at different locations within a given area is required. In unlicensed shared spectrum bands collection of metric data can be a challenging task for a cloud manager as indepen- dent self-interested APs can operate in these bands in the same area. We propose to design an intelligent crowdsourcing solution that incentivizes independent APs to truthfully measure/report data relating to their wireless channel utilization (CU). Our work focuses on challenging scenarios where independent APs can take advantage of recurring patterns in CU data by utilizing distribution aware strategies to obtain higher reward payments. We design truthful reporting methods that utilize logarithmic and quadratic scoring rules for reward payments to the APs. We show that when measurement computation costs are considered then under certain scenarios these scoring rules no longer ensure incentive compatibility. To address this, we present a novel reward function which incorporates a distribution aware penalty cost that charges APs for distorting reports based on recurring patterns. Along with synthetic data, we also use real CU data values crowdsourced using multiple independent measuring/reporting devices deployed by us in the University of Oulu

    Applications of Repeated Games in Wireless Networks: A Survey

    Full text link
    A repeated game is an effective tool to model interactions and conflicts for players aiming to achieve their objectives in a long-term basis. Contrary to static noncooperative games that model an interaction among players in only one period, in repeated games, interactions of players repeat for multiple periods; and thus the players become aware of other players' past behaviors and their future benefits, and will adapt their behavior accordingly. In wireless networks, conflicts among wireless nodes can lead to selfish behaviors, resulting in poor network performances and detrimental individual payoffs. In this paper, we survey the applications of repeated games in different wireless networks. The main goal is to demonstrate the use of repeated games to encourage wireless nodes to cooperate, thereby improving network performances and avoiding network disruption due to selfish behaviors. Furthermore, various problems in wireless networks and variations of repeated game models together with the corresponding solutions are discussed in this survey. Finally, we outline some open issues and future research directions.Comment: 32 pages, 15 figures, 5 tables, 168 reference

    Supporting Large Scale Communication Systems on Infrastructureless Networks Composed of Commodity Mobile Devices: Practicality, Scalability, and Security.

    Full text link
    Infrastructureless Delay Tolerant Networks (DTNs) composed of commodity mobile devices have the potential to support communication applications resistant to blocking and censorship, as well as certain types of surveillance. In this thesis we study the utility, practicality, robustness, and security of these networks. We collected two sets of wireless connectivity traces of commodity mobile devices with different granularity and scales. The first dataset is collected through active installation of measurement software on volunteer users' own smartphones, involving 111 users of a DTN microblogging application that we developed. The second dataset is collected through passive observation of WiFi association events on a university campus, involving 119,055 mobile devices. Simulation results show consistent message delivery performances of the two datasets. Using an epidemic flooding protocol, the large network achieves an average delivery rate of 0.71 in 24 hours and a median delivery delay of 10.9 hours. We show that this performance is appropriate for sharing information that is not time sensitive, e.g., blogs and photos. We also show that using an energy efficient variant of the epidemic flooding protocol, even the large network can support text messages while only consuming 13.7% of a typical smartphone battery in 14 hours. We found that the network delivery rate and delay are robust to denial-of-service and censorship attacks. Attacks that randomly remove 90% of the network participants only reduce delivery rates by less than 10%. Even when subjected to targeted attacks, the network suffered a less than 10% decrease in delivery rate when 40% of its participants were removed. Although structurally robust, the openness of the proposed network introduces numerous security concerns. The Sybil attack, in which a malicious node poses as many identities in order to gain disproportionate influence, is especially dangerous as it breaks the assumption underlying majority voting. Many defenses based on spatial variability of wireless channels exist, and we extend them to be practical for ad hoc networks of commodity 802.11 devices without mutual trust. We present the Mason test, which uses two efficient methods for separating valid channel measurement results of behaving nodes from those falsified by malicious participants.PhDElectrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/120779/1/liuyue_1.pd

    A survey on intelligent computation offloading and pricing strategy in UAV-Enabled MEC network: Challenges and research directions

    Get PDF
    The lack of resource constraints for edge servers makes it difficult to simultaneously perform a large number of Mobile Devices’ (MDs) requests. The Mobile Network Operator (MNO) must then select how to delegate MD queries to its Mobile Edge Computing (MEC) server in order to maximize the overall benefit of admitted requests with varying latency needs. Unmanned Aerial Vehicles (UAVs) and Artificial Intelligent (AI) can increase MNO performance because of their flexibility in deployment, high mobility of UAV, and efficiency of AI algorithms. There is a trade-off between the cost incurred by the MD and the profit received by the MNO. Intelligent computing offloading to UAV-enabled MEC, on the other hand, is a promising way to bridge the gap between MDs' limited processing resources, as well as the intelligent algorithms that are utilized for computation offloading in the UAV-MEC network and the high computing demands of upcoming applications. This study looks at some of the research on the benefits of computation offloading process in the UAV-MEC network, as well as the intelligent models that are utilized for computation offloading in the UAV-MEC network. In addition, this article examines several intelligent pricing techniques in different structures in the UAV-MEC network. Finally, this work highlights some important open research issues and future research directions of Artificial Intelligent (AI) in computation offloading and applying intelligent pricing strategies in the UAV-MEC network
    • …
    corecore