1,815 research outputs found

    Deduction modulo theory

    Get PDF
    This paper is a survey on Deduction modulo theor

    Semantic A-translation and Super-consistency entail Classical Cut Elimination

    Get PDF
    We show that if a theory R defined by a rewrite system is super-consistent, the classical sequent calculus modulo R enjoys the cut elimination property, which was an open question. For such theories it was already known that proofs strongly normalize in natural deduction modulo R, and that cut elimination holds in the intuitionistic sequent calculus modulo R. We first define a syntactic and a semantic version of Friedman's A-translation, showing that it preserves the structure of pseudo-Heyting algebra, our semantic framework. Then we relate the interpretation of a theory in the A-translated algebra and its A-translation in the original algebra. This allows to show the stability of the super-consistency criterion and the cut elimination theorem

    Models and termination of proof reduction in the λ\lambdaΠ\Pi-calculus modulo theory

    Full text link
    We define a notion of model for the λ\lambdaΠ\Pi-calculus modulo theory and prove a soundness theorem. We then define a notion of super-consistency and prove that proof reduction terminates in the λ\lambdaΠ\Pi-calculus modulo any super-consistent theory. We prove this way the termination of proof reduction in several theories including Simple type theory and the Calculus of constructions

    The extension problem for partial Boolean structures in Quantum Mechanics

    Full text link
    Alternative partial Boolean structures, implicit in the discussion of classical representability of sets of quantum mechanical predictions, are characterized, with definite general conclusions on the equivalence of the approaches going back to Bell and Kochen-Specker. An algebraic approach is presented, allowing for a discussion of partial classical extension, amounting to reduction of the number of contexts, classical representability arising as a special case. As a result, known techniques are generalized and some of the associated computational difficulties overcome. The implications on the discussion of Boole-Bell inequalities are indicated.Comment: A number of misprints have been corrected and some terminology changed in order to avoid possible ambiguitie

    Hermitian forms for affine Hecke algebras

    Full text link
    We study star operations for Iwahori-Hecke algebras and invariant hermitian forms for finite dimensional modules over (graded) affine Hecke algebras with a view towards a unitarity algorithm.Comment: 29 pages, preliminary version. v2: the classification of star operations for the graded Hecke algebras and the construction of hermitian forms in the Iwahori case via Bernstein's projectives have been removed from this preprint and they will make the basis of a new pape

    Topos-Theoretic Extension of a Modal Interpretation of Quantum Mechanics

    Full text link
    This paper deals with topos-theoretic truth-value valuations of quantum propositions. Concretely, a mathematical framework of a specific type of modal approach is extended to the topos theory, and further, structures of the obtained truth-value valuations are investigated. What is taken up is the modal approach based on a determinate lattice \Dcal(e,R), which is a sublattice of the lattice \Lcal of all quantum propositions and is determined by a quantum state ee and a preferred determinate observable RR. Topos-theoretic extension is made in the functor category \Sets^{\CcalR} of which base category \CcalR is determined by RR. Each true atom, which determines truth values, true or false, of all propositions in \Dcal(e,R), generates also a multi-valued valuation function of which domain and range are \Lcal and a Heyting algebra given by the subobject classifier in \Sets^{\CcalR}, respectively. All true propositions in \Dcal(e,R) are assigned the top element of the Heyting algebra by the valuation function. False propositions including the null proposition are, however, assigned values larger than the bottom element. This defect can be removed by use of a subobject semi-classifier. Furthermore, in order to treat all possible determinate observables in a unified framework, another valuations are constructed in the functor category \Sets^{\Ccal}. Here, the base category \Ccal includes all \CcalR's as subcategories. Although \Sets^{\Ccal} has a structure apparently different from \Sets^{\CcalR}, a subobject semi-classifier of \Sets^{\Ccal} gives valuations completely equivalent to those in \Sets^{\CcalR}'s.Comment: LaTeX2

    Quantum and Braided Linear Algebra

    Full text link
    Quantum matrices A(R)A(R) are known for every RR matrix obeying the Quantum Yang-Baxter Equations. It is also known that these act on `vectors' given by the corresponding Zamalodchikov algebra. We develop this interpretation in detail, distinguishing between two forms of this algebra, V(R)V(R) (vectors) and V(R)V^*(R) (covectors). A(R)\to V(R_{21})\tens V^*(R) is an algebra homomorphism (i.e. quantum matrices are realized by the tensor product of a quantum vector with a quantum covector), while the inner product of a quantum covector with a quantum vector transforms as a scaler. We show that if V(R)V(R) and V(R)V^*(R) are endowed with the necessary braid statistics Ψ\Psi then their braided tensor-product V(R)\und\tens V^*(R) is a realization of the braided matrices B(R)B(R) introduced previously, while their inner product leads to an invariant quantum trace. Introducing braid statistics in this way leads to a fully covariant quantum (braided) linear algebra. The braided groups obtained from B(R)B(R) act on themselves by conjugation in a way impossible for the quantum groups obtained from A(R)A(R).Comment: 27 page

    Bell inequalities from variable elimination methods

    Full text link
    Tight Bell inequalities are facets of Pitowsky's correlation polytope and are usually obtained from its extreme points by solving the hull problem. Here we present an alternative method based on a combination of algebraic results on extensions of measures and variable elimination methods, e.g., the Fourier-Motzkin method. Our method is shown to overcome some of the computational difficulties associated with the hull problem in some non-trivial cases. Moreover, it provides an explanation for the arising of only a finite number of families of Bell inequalities in measurement scenarios where one experimenter can choose between an arbitrary number of different measurements

    On an Intuitionistic Logic for Pragmatics

    Get PDF
    We reconsider the pragmatic interpretation of intuitionistic logic [21] regarded as a logic of assertions and their justications and its relations with classical logic. We recall an extension of this approach to a logic dealing with assertions and obligations, related by a notion of causal implication [14, 45]. We focus on the extension to co-intuitionistic logic, seen as a logic of hypotheses [8, 9, 13] and on polarized bi-intuitionistic logic as a logic of assertions and conjectures: looking at the S4 modal translation, we give a denition of a system AHL of bi-intuitionistic logic that correctly represents the duality between intuitionistic and co-intuitionistic logic, correcting a mistake in previous work [7, 10]. A computational interpretation of cointuitionism as a distributed calculus of coroutines is then used to give an operational interpretation of subtraction.Work on linear co-intuitionism is then recalled, a linear calculus of co-intuitionistic coroutines is dened and a probabilistic interpretation of linear co-intuitionism is given as in [9]. Also we remark that by extending the language of intuitionistic logic we can express the notion of expectation, an assertion that in all situations the truth of p is possible and that in a logic of expectations the law of double negation holds. Similarly, extending co-intuitionistic logic, we can express the notion of conjecture that p, dened as a hypothesis that in some situation the truth of p is epistemically necessary
    corecore