9,998 research outputs found

    Edge-labeling Graph Neural Network for Few-shot Learning

    Full text link
    In this paper, we propose a novel edge-labeling graph neural network (EGNN), which adapts a deep neural network on the edge-labeling graph, for few-shot learning. The previous graph neural network (GNN) approaches in few-shot learning have been based on the node-labeling framework, which implicitly models the intra-cluster similarity and the inter-cluster dissimilarity. In contrast, the proposed EGNN learns to predict the edge-labels rather than the node-labels on the graph that enables the evolution of an explicit clustering by iteratively updating the edge-labels with direct exploitation of both intra-cluster similarity and the inter-cluster dissimilarity. It is also well suited for performing on various numbers of classes without retraining, and can be easily extended to perform a transductive inference. The parameters of the EGNN are learned by episodic training with an edge-labeling loss to obtain a well-generalizable model for unseen low-data problem. On both of the supervised and semi-supervised few-shot image classification tasks with two benchmark datasets, the proposed EGNN significantly improves the performances over the existing GNNs.Comment: accepted to CVPR 201

    Data Efficient and Weakly Supervised Computational Pathology on Whole Slide Images

    Full text link
    The rapidly emerging field of computational pathology has the potential to enable objective diagnosis, therapeutic response prediction and identification of new morphological features of clinical relevance. However, deep learning-based computational pathology approaches either require manual annotation of gigapixel whole slide images (WSIs) in fully-supervised settings or thousands of WSIs with slide-level labels in a weakly-supervised setting. Moreover, whole slide level computational pathology methods also suffer from domain adaptation and interpretability issues. These challenges have prevented the broad adaptation of computational pathology for clinical and research purposes. Here we present CLAM - Clustering-constrained attention multiple instance learning, an easy-to-use, high-throughput, and interpretable WSI-level processing and learning method that only requires slide-level labels while being data efficient, adaptable and capable of handling multi-class subtyping problems. CLAM is a deep-learning-based weakly-supervised method that uses attention-based learning to automatically identify sub-regions of high diagnostic value in order to accurately classify the whole slide, while also utilizing instance-level clustering over the representative regions identified to constrain and refine the feature space. In three separate analyses, we demonstrate the data efficiency and adaptability of CLAM and its superior performance over standard weakly-supervised classification. We demonstrate that CLAM models are interpretable and can be used to identify well-known and new morphological features. We further show that models trained using CLAM are adaptable to independent test cohorts, cell phone microscopy images, and biopsies. CLAM is a general-purpose and adaptable method that can be used for a variety of different computational pathology tasks in both clinical and research settings

    ECKO: Ensemble of Clustered Knockoffs for multivariate inference on fMRI data

    Full text link
    Continuous improvement in medical imaging techniques allows the acquisition of higher-resolution images. When these are used in a predictive setting, a greater number of explanatory variables are potentially related to the dependent variable (the response). Meanwhile, the number of acquisitions per experiment remains limited. In such high dimension/small sample size setting, it is desirable to find the explanatory variables that are truly related to the response while controlling the rate of false discoveries. To achieve this goal, novel multivariate inference procedures, such as knockoff inference, have been proposed recently. However, they require the feature covariance to be well-defined, which is impossible in high-dimensional settings. In this paper, we propose a new algorithm, called Ensemble of Clustered Knockoffs, that allows to select explanatory variables while controlling the false discovery rate (FDR), up to a prescribed spatial tolerance. The core idea is that knockoff-based inference can be applied on groups (clusters) of voxels, which drastically reduces the problem's dimension; an ensembling step then removes the dependence on a fixed clustering and stabilizes the results. We benchmark this algorithm and other FDR-controlling methods on brain imaging datasets and observe empirical gains in sensitivity, while the false discovery rate is controlled at the nominal level.Comment: Accepted to 26th International Conference on Information Processing in Medical Imaging (IPMI

    Crowd-Powered Data Mining

    Full text link
    Many data mining tasks cannot be completely addressed by auto- mated processes, such as sentiment analysis and image classification. Crowdsourcing is an effective way to harness the human cognitive ability to process these machine-hard tasks. Thanks to public crowdsourcing platforms, e.g., Amazon Mechanical Turk and Crowd- Flower, we can easily involve hundreds of thousands of ordinary workers (i.e., the crowd) to address these machine-hard tasks. In this tutorial, we will survey and synthesize a wide spectrum of existing studies on crowd-powered data mining. We first give an overview of crowdsourcing, and then summarize the fundamental techniques, including quality control, cost control, and latency control, which must be considered in crowdsourced data mining. Next we review crowd-powered data mining operations, including classification, clustering, pattern mining, machine learning using the crowd (including deep learning, transfer learning and semi-supervised learning) and knowledge discovery. Finally, we provide the emerging challenges in crowdsourced data mining

    LaserNet: An Efficient Probabilistic 3D Object Detector for Autonomous Driving

    Full text link
    In this paper, we present LaserNet, a computationally efficient method for 3D object detection from LiDAR data for autonomous driving. The efficiency results from processing LiDAR data in the native range view of the sensor, where the input data is naturally compact. Operating in the range view involves well known challenges for learning, including occlusion and scale variation, but it also provides contextual information based on how the sensor data was captured. Our approach uses a fully convolutional network to predict a multimodal distribution over 3D boxes for each point and then it efficiently fuses these distributions to generate a prediction for each object. Experiments show that modeling each detection as a distribution rather than a single deterministic box leads to better overall detection performance. Benchmark results show that this approach has significantly lower runtime than other recent detectors and that it achieves state-of-the-art performance when compared on a large dataset that has enough data to overcome the challenges of training on the range view.Comment: Accepted for publication at CVPR 201

    Learning to Identify High Betweenness Centrality Nodes from Scratch: A Novel Graph Neural Network Approach

    Full text link
    Betweenness centrality (BC) is one of the most used centrality measures for network analysis, which seeks to describe the importance of nodes in a network in terms of the fraction of shortest paths that pass through them. It is key to many valuable applications, including community detection and network dismantling. Computing BC scores on large networks is computationally challenging due to high time complexity. Many approximation algorithms have been proposed to speed up the estimation of BC, which are mainly sampling-based. However, these methods are still prone to considerable execution time on large-scale networks, and their results are often exacerbated when small changes happen to the network structures. In this paper, we focus on identifying nodes with high BC in a graph, since many application scenarios are built upon retrieving nodes with top-k BC. Different from previous heuristic methods, we turn this task into a learning problem and design an encoder-decoder based framework to resolve the problem. More specifcally, the encoder leverages the network structure to encode each node into an embedding vector, which captures the important structural information of the node. The decoder transforms the embedding vector for each node into a scalar, which captures the relative rank of this node in terms of BC. We use the pairwise ranking loss to train the model to identify the orders of nodes regarding their BC. By training on small-scale networks, the learned model is capable of assigning relative BC scores to nodes for any unseen networks, and thus identifying the highly-ranked nodes. Comprehensive experiments on both synthetic and real-world networks demonstrate that, compared to representative baselines, our model drastically speeds up the prediction without noticeable sacrifce in accuracy, and outperforms the state-of-the-art by accuracy on several large real-world networks.Comment: 10 pages, 4 figures, 8 table

    Unsupervised Submodular Rank Aggregation on Score-based Permutations

    Full text link
    Unsupervised rank aggregation on score-based permutations, which is widely used in many applications, has not been deeply explored yet. This work studies the use of submodular optimization for rank aggregation on score-based permutations in an unsupervised way. Specifically, we propose an unsupervised approach based on the Lovasz Bregman divergence for setting up linear structured convex and nested structured concave objective functions. In addition, stochastic optimization methods are applied in the training process and efficient algorithms for inference can be guaranteed. The experimental results from Information Retrieval, Combining Distributed Neural Networks, Influencers in Social Networks, and Distributed Automatic Speech Recognition tasks demonstrate the effectiveness of the proposed methods

    Semantic Instance Segmentation with a Discriminative Loss Function

    Full text link
    Semantic instance segmentation remains a challenging task. In this work we propose to tackle the problem with a discriminative loss function, operating at the pixel level, that encourages a convolutional network to produce a representation of the image that can easily be clustered into instances with a simple post-processing step. The loss function encourages the network to map each pixel to a point in feature space so that pixels belonging to the same instance lie close together while different instances are separated by a wide margin. Our approach of combining an off-the-shelf network with a principled loss function inspired by a metric learning objective is conceptually simple and distinct from recent efforts in instance segmentation. In contrast to previous works, our method does not rely on object proposals or recurrent mechanisms. A key contribution of our work is to demonstrate that such a simple setup without bells and whistles is effective and can perform on par with more complex methods. Moreover, we show that it does not suffer from some of the limitations of the popular detect-and-segment approaches. We achieve competitive performance on the Cityscapes and CVPPP leaf segmentation benchmarks.Comment: Published at "Deep Learning for Robotic Vision", workshop at CVPR 201

    Multi-view X-ray R-CNN

    Full text link
    Motivated by the detection of prohibited objects in carry-on luggage as a part of avionic security screening, we develop a CNN-based object detection approach for multi-view X-ray image data. Our contributions are two-fold. First, we introduce a novel multi-view pooling layer to perform a 3D aggregation of 2D CNN-features extracted from each view. To that end, our pooling layer exploits the known geometry of the imaging system to ensure geometric consistency of the feature aggregation. Second, we introduce an end-to-end trainable multi-view detection pipeline based on Faster R-CNN, which derives the region proposals and performs the final classification in 3D using these aggregated multi-view features. Our approach shows significant accuracy gains compared to single-view detection while even being more efficient than performing single-view detection in each view.Comment: To appear at the 40th German Conference on Pattern Recognition (GCPR) 201

    RelNN: A Deep Neural Model for Relational Learning

    Full text link
    Statistical relational AI (StarAI) aims at reasoning and learning in noisy domains described in terms of objects and relationships by combining probability with first-order logic. With huge advances in deep learning in the current years, combining deep networks with first-order logic has been the focus of several recent studies. Many of the existing attempts, however, only focus on relations and ignore object properties. The attempts that do consider object properties are limited in terms of modelling power or scalability. In this paper, we develop relational neural networks (RelNNs) by adding hidden layers to relational logistic regression (the relational counterpart of logistic regression). We learn latent properties for objects both directly and through general rules. Back-propagation is used for training these models. A modular, layer-wise architecture facilitates utilizing the techniques developed within deep learning community to our architecture. Initial experiments on eight tasks over three real-world datasets show that RelNNs are promising models for relational learning.Comment: 9 pages, 8 figures, accepted at AAAI-201
    • …
    corecore