14,537 research outputs found

    Unifying Sparsest Cut, Cluster Deletion, and Modularity Clustering Objectives with Correlation Clustering

    Get PDF
    Graph clustering, or community detection, is the task of identifying groups of closely related objects in a large network. In this paper we introduce a new community-detection framework called LambdaCC that is based on a specially weighted version of correlation clustering. A key component in our methodology is a clustering resolution parameter, λ\lambda, which implicitly controls the size and structure of clusters formed by our framework. We show that, by increasing this parameter, our objective effectively interpolates between two different strategies in graph clustering: finding a sparse cut and forming dense subgraphs. Our methodology unifies and generalizes a number of other important clustering quality functions including modularity, sparsest cut, and cluster deletion, and places them all within the context of an optimization problem that has been well studied from the perspective of approximation algorithms. Our approach is particularly relevant in the regime of finding dense clusters, as it leads to a 2-approximation for the cluster deletion problem. We use our approach to cluster several graphs, including large collaboration networks and social networks

    Defining and Evaluating Network Communities based on Ground-truth

    Full text link
    Nodes in real-world networks organize into densely linked communities where edges appear with high concentration among the members of the community. Identifying such communities of nodes has proven to be a challenging task mainly due to a plethora of definitions of a community, intractability of algorithms, issues with evaluation and the lack of a reliable gold-standard ground-truth. In this paper we study a set of 230 large real-world social, collaboration and information networks where nodes explicitly state their group memberships. For example, in social networks nodes explicitly join various interest based social groups. We use such groups to define a reliable and robust notion of ground-truth communities. We then propose a methodology which allows us to compare and quantitatively evaluate how different structural definitions of network communities correspond to ground-truth communities. We choose 13 commonly used structural definitions of network communities and examine their sensitivity, robustness and performance in identifying the ground-truth. We show that the 13 structural definitions are heavily correlated and naturally group into four classes. We find that two of these definitions, Conductance and Triad-participation-ratio, consistently give the best performance in identifying ground-truth communities. We also investigate a task of detecting communities given a single seed node. We extend the local spectral clustering algorithm into a heuristic parameter-free community detection method that easily scales to networks with more than hundred million nodes. The proposed method achieves 30% relative improvement over current local clustering methods.Comment: Proceedings of 2012 IEEE International Conference on Data Mining (ICDM), 201

    FRIOD: a deeply integrated feature-rich interactive system for effective and efficient outlier detection

    Get PDF
    In this paper, we propose an novel interactive outlier detection system called feature-rich interactive outlier detection (FRIOD), which features a deep integration of human interaction to improve detection performance and greatly streamline the detection process. A user-friendly interactive mechanism is developed to allow easy and intuitive user interaction in all the major stages of the underlying outlier detection algorithm which includes dense cell selection, location-aware distance thresholding, and final top outlier validation. By doing so, we can mitigate the major difficulty of the competitive outlier detection methods in specifying the key parameter values, such as the density and distance thresholds. An innovative optimization approach is also proposed to optimize the grid-based space partitioning, which is a critical step of FRIOD. Such optimization fully considers the high-quality outliers it detects with the aid of human interaction. The experimental evaluation demonstrates that FRIOD can improve the quality of the detected outliers and make the detection process more intuitive, effective, and efficient
    • …
    corecore