264 research outputs found

    Quality of Information in Mobile Crowdsensing: Survey and Research Challenges

    Full text link
    Smartphones have become the most pervasive devices in people's lives, and are clearly transforming the way we live and perceive technology. Today's smartphones benefit from almost ubiquitous Internet connectivity and come equipped with a plethora of inexpensive yet powerful embedded sensors, such as accelerometer, gyroscope, microphone, and camera. This unique combination has enabled revolutionary applications based on the mobile crowdsensing paradigm, such as real-time road traffic monitoring, air and noise pollution, crime control, and wildlife monitoring, just to name a few. Differently from prior sensing paradigms, humans are now the primary actors of the sensing process, since they become fundamental in retrieving reliable and up-to-date information about the event being monitored. As humans may behave unreliably or maliciously, assessing and guaranteeing Quality of Information (QoI) becomes more important than ever. In this paper, we provide a new framework for defining and enforcing the QoI in mobile crowdsensing, and analyze in depth the current state-of-the-art on the topic. We also outline novel research challenges, along with possible directions of future work.Comment: To appear in ACM Transactions on Sensor Networks (TOSN

    Secure authentication and data aggregation scheme for routing packets in wireless sensor network

    Get PDF
    Wireless sensor networks (WSNs) comprise a huge number of sensors that sense real-time data; in general, WSNs are designed for monitoring in various application mainly internet of things based (IoT) application. Moreover, these sensors possess a certain amount of energy i.e., they are battery based; thus, the network model must be efficient. Furthermore, data aggregation is a mechanism that minimizes the energy; however, in addition, these aggregated data and networks can be subject to different types of attacks due to the vulnerable characteristics of the network. Hence it is important to provide end-to-end security in the data aggregation mechanism in this we design and develop dual layer integrated (DLI)-security architecture for secure data aggregation; DLI-security architecture is an integration of two distinctive layers. The first layer of architecture deals with developing an authentication for reputation-based communication; the second layer of architecture focuses on securing the aggregated data through a consensus-based approach. The experiment outcome shows that DLI identifies the correct data packets and discards the unsecured data packets in energy efficient way with minimal computation overhead and higher throughput in comparison with the existing model

    Tactful Networking: Humans in the Communication Loop

    Get PDF
    International audienceThis survey discusses the human-perspective into networking through the Tactful Networking paradigm, whose goal is to add perceptive senses to the network by assigning it with human-like capabilities of observation, interpretation, and reaction to daily-life features and associated entities. To achieve this, knowledge extracted from inherent human behavior in terms of routines, personality, interactions, and others is leveraged, empowering the learning and prediction of user needs to improve QoE and system performance while respecting privacy and fostering new applications and services. Tactful Networking groups solutions from literature and innovative interdisciplinary human aspects studied in other areas. The paradigm is motivated by mobile devices' pervasiveness and increasing presence as a sensor in our daily social activities. With the human element in the foreground, it is essential: (i) to center big data analytics around individuals; (ii) to create suitable incentive mechanisms for user participation; (iii) to design and evaluate both humanaware and system-aware networking solutions; and (iv) to apply prior and innovative techniques to deal with human-behavior sensing and learning. This survey reviews the human aspect in networking solutions through over a decade, followed by discussing the tactful networking impact through literature in behavior analysis and representative examples. This paper also discusses a framework comprising data management, analytics, and privacy for enhancing human raw-data to assist Tactful Networking solutions. Finally, challenges and opportunities for future research are presented

    A survey of spatial crowdsourcing

    Get PDF

    Recent advances in industrial wireless sensor networks towards efficient management in IoT

    Get PDF
    With the accelerated development of Internet-of- Things (IoT), wireless sensor networks (WSN) are gaining importance in the continued advancement of information and communication technologies, and have been connected and integrated with Internet in vast industrial applications. However, given the fact that most wireless sensor devices are resource constrained and operate on batteries, the communication overhead and power consumption are therefore important issues for wireless sensor networks design. In order to efficiently manage these wireless sensor devices in a unified manner, the industrial authorities should be able to provide a network infrastructure supporting various WSN applications and services that facilitate the management of sensor-equipped real-world entities. This paper presents an overview of industrial ecosystem, technical architecture, industrial device management standards and our latest research activity in developing a WSN management system. The key approach to enable efficient and reliable management of WSN within such an infrastructure is a cross layer design of lightweight and cloud-based RESTful web service

    Service Provisioning in Edge-Cloud Continuum Emerging Applications for Mobile Devices

    Get PDF
    Disruptive applications for mobile devices can be enhanced by Edge computing facilities. In this context, Edge Computing (EC) is a proposed architecture to meet the mobility requirements imposed by these applications in a wide range of domains, such as the Internet of Things, Immersive Media, and Connected and Autonomous Vehicles. EC architecture aims to introduce computing capabilities in the path between the user and the Cloud to execute tasks closer to where they are consumed, thus mitigating issues related to latency, context awareness, and mobility support. In this survey, we describe which are the leading technologies to support the deployment of EC infrastructure. Thereafter, we discuss the applications that can take advantage of EC and how they were proposed in the literature. Finally, after examining enabling technologies and related applications, we identify some open challenges to fully achieve the potential of EC, and also research opportunities on upcoming paradigms for service provisioning. This survey is a guide to comprehend the recent advances on the provisioning of mobile applications, as well as foresee the expected next stages of evolution for these applications
    • …
    corecore