3,411 research outputs found

    Trust model for certificate revocation in Ad hoc networks

    Get PDF
    In this paper we propose a distributed trust model for certificate revocation in Adhoc networks. The proposed model allows trust to be built over time as the number of interactions between nodes increase. Furthermore, trust in a node is defined not only in terms of its potential for maliciousness, but also in terms of the quality of the service it provides. Trust in nodes where there is little or no history of interactions is determined by recommendations from other nodes. If the nodes in the network are selfish, trust is obtained by an exchange of portfolios. Bayesian networks form the underlying basis for this model

    A robust self-organized public key management for mobile ad hoc networks

    Get PDF
    A mobile ad hoc network (MANET) is a self-organized wireless network where mobile nodes can communicate with each other without the use of any existing network infrastructure or centralized administration. Trust establishment and management are essential for any security framework of MANETs. However, traditional solutions to key management through accessing trusted authorities or centralized servers are infeasible for MANETs due to the absence of infrastructure, frequent mobility, and wireless link instability. In this paper, we propose a robust self-organized, public key management for MANETs. The proposed scheme relies on establishing a small number of trust relations between neighboring nodes during the network initialization phase. Experiences gained as a result of successful communications and node mobility through the network enhance the formation of a web of trust between mobile nodes. The proposed scheme allows each user to create its public key and the corresponding private key, to issue certificates to neighboring nodes, and to perform public key authentication through at least two independent certificate chains without relying on any centralized authority. A measure of the communications cost of the key distribution process has been proposed. Simulation results show that the proposed scheme is robust and efficient in the mobility environment of MANET and against malicious node attacks

    Data-centric Misbehavior Detection in VANETs

    Full text link
    Detecting misbehavior (such as transmissions of false information) in vehicular ad hoc networks (VANETs) is very important problem with wide range of implications including safety related and congestion avoidance applications. We discuss several limitations of existing misbehavior detection schemes (MDS) designed for VANETs. Most MDS are concerned with detection of malicious nodes. In most situations, vehicles would send wrong information because of selfish reasons of their owners, e.g. for gaining access to a particular lane. Because of this (\emph{rational behavior}), it is more important to detect false information than to identify misbehaving nodes. We introduce the concept of data-centric misbehavior detection and propose algorithms which detect false alert messages and misbehaving nodes by observing their actions after sending out the alert messages. With the data-centric MDS, each node can independently decide whether an information received is correct or false. The decision is based on the consistency of recent messages and new alert with reported and estimated vehicle positions. No voting or majority decisions is needed, making our MDS resilient to Sybil attacks. Instead of revoking all the secret credentials of misbehaving nodes, as done in most schemes, we impose fines on misbehaving nodes (administered by the certification authority), discouraging them to act selfishly. This reduces the computation and communication costs involved in revoking all the secret credentials of misbehaving nodes.Comment: 12 page

    Formal Analysis of V2X Revocation Protocols

    Get PDF
    Research on vehicular networking (V2X) security has produced a range of security mechanisms and protocols tailored for this domain, addressing both security and privacy. Typically, the security analysis of these proposals has largely been informal. However, formal analysis can be used to expose flaws and ultimately provide a higher level of assurance in the protocols. This paper focusses on the formal analysis of a particular element of security mechanisms for V2X found in many proposals: the revocation of malicious or misbehaving vehicles from the V2X system by invalidating their credentials. This revocation needs to be performed in an unlinkable way for vehicle privacy even in the context of vehicles regularly changing their pseudonyms. The REWIRE scheme by Forster et al. and its subschemes BASIC and RTOKEN aim to solve this challenge by means of cryptographic solutions and trusted hardware. Formal analysis using the TAMARIN prover identifies two flaws with some of the functional correctness and authentication properties in these schemes. We then propose Obscure Token (OTOKEN), an extension of REWIRE to enable revocation in a privacy preserving manner. Our approach addresses the functional and authentication properties by introducing an additional key-pair, which offers a stronger and verifiable guarantee of successful revocation of vehicles without resolving the long-term identity. Moreover OTOKEN is the first V2X revocation protocol to be co-designed with a formal model.Comment: 16 pages, 4 figure

    Security and Privacy Issues in Wireless Mesh Networks: A Survey

    Full text link
    This book chapter identifies various security threats in wireless mesh network (WMN). Keeping in mind the critical requirement of security and user privacy in WMNs, this chapter provides a comprehensive overview of various possible attacks on different layers of the communication protocol stack for WMNs and their corresponding defense mechanisms. First, it identifies the security vulnerabilities in the physical, link, network, transport, application layers. Furthermore, various possible attacks on the key management protocols, user authentication and access control protocols, and user privacy preservation protocols are presented. After enumerating various possible attacks, the chapter provides a detailed discussion on various existing security mechanisms and protocols to defend against and wherever possible prevent the possible attacks. Comparative analyses are also presented on the security schemes with regards to the cryptographic schemes used, key management strategies deployed, use of any trusted third party, computation and communication overhead involved etc. The chapter then presents a brief discussion on various trust management approaches for WMNs since trust and reputation-based schemes are increasingly becoming popular for enforcing security in wireless networks. A number of open problems in security and privacy issues for WMNs are subsequently discussed before the chapter is finally concluded.Comment: 62 pages, 12 figures, 6 tables. This chapter is an extension of the author's previous submission in arXiv submission: arXiv:1102.1226. There are some text overlaps with the previous submissio

    Trust Based Certificate Revocation for Secure Routing in MANET

    Get PDF
    AbstractMany trust establishment solutions in mobile ad hoc networks (MANETs) rely on public key certificates. Therefore, they should be accompanied by an efficient mechanism for certificate revocation and validation. In order to reduce the hazards from nodes and to enhance the security of network we propose to develop a CA distribution and a Trust based threshold revocation method. Initially the trust value is computed from the direct and indirect trust values. And the certificate authorities distributes the secret key to al the nodes. Followed by this a trust based threshold revocation method is computed. Here the misbehaving nodes are eliminated
    • 

    corecore