4,692 research outputs found

    Mobility management in 5G heterogeneous networks

    Get PDF
    In recent years, mobile data traffic has increased exponentially as a result of widespread popularity and uptake of portable devices, such as smartphones, tablets and laptops. This growth has placed enormous stress on network service providers who are committed to offering the best quality of service to consumer groups. Consequently, telecommunication engineers are investigating innovative solutions to accommodate the additional load offered by growing numbers of mobile users. The fifth generation (5G) of wireless communication standard is expected to provide numerous innovative solutions to meet the growing demand of consumer groups. Accordingly the ultimate goal is to achieve several key technological milestones including up to 1000 times higher wireless area capacity and a significant cut in power consumption. Massive deployment of small cells is likely to be a key innovation in 5G, which enables frequent frequency reuse and higher data rates. Small cells, however, present a major challenge for nodes moving at vehicular speeds. This is because the smaller coverage areas of small cells result in frequent handover, which leads to lower throughput and longer delay. In this thesis, a new mobility management technique is introduced that reduces the number of handovers in a 5G heterogeneous network. This research also investigates techniques to accommodate low latency applications in nodes moving at vehicular speeds

    Fuzzy Logic

    Get PDF
    The capability of Fuzzy Logic in the development of emerging technologies is introduced in this book. The book consists of sixteen chapters showing various applications in the field of Bioinformatics, Health, Security, Communications, Transportations, Financial Management, Energy and Environment Systems. This book is a major reference source for all those concerned with applied intelligent systems. The intended readers are researchers, engineers, medical practitioners, and graduate students interested in fuzzy logic systems

    Training of Crisis Mappers and Map Production from Multi-sensor Data: Vernazza Case Study (Cinque Terre National Park, Italy)

    Get PDF
    This aim of paper is to presents the development of a multidisciplinary project carried out by the cooperation between Politecnico di Torino and ITHACA (Information Technology for Humanitarian Assistance, Cooperation and Action). The goal of the project was the training in geospatial data acquiring and processing for students attending Architecture and Engineering Courses, in order to start up a team of "volunteer mappers". Indeed, the project is aimed to document the environmental and built heritage subject to disaster; the purpose is to improve the capabilities of the actors involved in the activities connected in geospatial data collection, integration and sharing. The proposed area for testing the training activities is the Cinque Terre National Park, registered in the World Heritage List since 1997. The area was affected by flood on the 25th of October 2011. According to other international experiences, the group is expected to be active after emergencies in order to upgrade maps, using data acquired by typical geomatic methods and techniques such as terrestrial and aerial Lidar, close-range and aerial photogrammetry, topographic and GNSS instruments etc.; or by non conventional systems and instruments such us UAV, mobile mapping etc. The ultimate goal is to implement a WebGIS platform to share all the data collected with local authorities and the Civil Protectio

    QoS-Balancing Algorithm for Optimal Relay Selection in Heterogeneous Vehicular Networks

    Get PDF
    Intelligent Transportation System (ITS) could facilitate communications among various road entities to improve the driver's safety and driving experience. These communications are called Vehicle-to-Everything (V2X) communications that can be supported by LTE-V2X protocols. Due to frequent changes of network topology in V2X, the source node (e.g., a vehicle) may have to choose a Device-to-Device(D2D) relay node to forward its packet to the destination node. In this paper, we propose a new method for choosing an optimal D2D relay node. The proposed method considers Quality of Service (QoS) requirements for selecting D2D relay nodes. It employs an Analytic Hierarchy Process (AHP) for making decisions. The decision criteria are linked with channel capacity, link stability and end-to-end delay. A number of simulations were performed considering various network scenarios to evaluate the performance of the proposed method. Simulation results show that the proposed method improves Packet Dropping Rate (PDR) by 30% and delivery ratio by 23% in comparison with the existing methods

    Design Models for Trusted Communications in Vehicle-to-Everything (V2X) Networks

    Get PDF
    Intelligent transportation system is one of the main systems which has been developed to achieve safe traffic and efficient transportation. It enables the road entities to establish connections with other road entities and infrastructure units using Vehicle-to-Everything (V2X) communications. To improve the driving experience, various applications are implemented to allow for road entities to share the information among each other. Then, based on the received information, the road entity can make its own decision regarding road safety and guide the driver. However, when these packets are dropped for any reason, it could lead to inaccurate decisions due to lack of enough information. Therefore, the packets should be sent through a trusted communication. The trusted communication includes a trusted link and trusted road entity. Before sending packets, the road entity should assess the link quality and choose the trusted link to ensure the packet delivery. Also, evaluating the neighboring node behavior is essential to obtain trusted communications because some misbehavior nodes may drop the received packets. As a consequence, two main models are designed to achieve trusted V2X communications. First, a multi-metric Quality of Service (QoS)-balancing relay selection algorithm is proposed to elect the trusted link. Analytic Hierarchy Process (AHP) is applied to evaluate the link based on three metrics, which are channel capacity, link stability and end-to-end delay. Second, a recommendation-based trust model is designed for V2X communication to exclude misbehavior nodes. Based on a comparison between trust-based methods, weighted-sum is chosen in the proposed model. The proposed methods ensure trusted communications by reducing the Packet Dropping Rate (PDR) and increasing the end-to-end delivery packet ratio. In addition, the proposed trust model achieves a very low False Negative Rate (FNR) in comparison with an existing model

    Control priorization model for improving information security risk assessment

    Get PDF
    Evaluating particular assets for information security risk assessment should take into consideration the availability of adequate resources and return on investments (ROI). Despite the need for a good risk assessment framework, many of the existing frameworks lack of granularity guidelines and mostly depend on qualitative methods. Hence, they require additional time and cost to test all the information security controls. Further, the reliance on human inputs and feedback will increase subjective judgment in organizations. The main goal of this research is to design an efficient Information Security Control Prioritization (ISCP) model in improving the risk assessment process. Case studies based on penetration tests and vulnerability assessments were performed to gather data. Then, Technique for Order Performance by Similarity to Ideal Solution (TOPSIS) was used to prioritize them. A combination of sensitivity analysis and expert interviews were used to test and validate the model. Subsequently, the performance of the model was evaluated by the risk assessment experts. The results demonstrate that ISCP model improved the quality of information security control assessment in the organization. The model plays a significant role in prioritizing the critical security technical controls during the risk assessment process. Furthermore, the model’s output supports ROI by identifying the appropriate controls to mitigate risks to an acceptable level in the organizations. The major contribution of this research is the development of a model which minimizes the uncertainty, cost and time of the information security control assessment. Thus, the clear practical guidelines will help organizations to prioritize important controls reliably and more efficiently. All these contributions will minimize resource utilization and maximize the organization’s information security
    corecore