72,742 research outputs found

    A formal model of trust lifecycle management

    Get PDF
    The rapid development of collaborative environments over the internet has highlighted new concerns over security and trust in such global computing systems. The global computing infrastructure poses an issue of uncertainty about the potential collaborators. Reaching a trusting decision in such environments encompasses both risk and trust assessments. While much work has been done in terms of modelling trust, the investigation of the management of trust lifecycle issues with consideration of both trust and risk is less examined. Our previous work addressed the dynamic aspects of trust lifecycle with a consideration of trust formation, exploitation, and evolution. In this paper we provide an approach for formalizing these aspects. As part of the formalization of the trust lifecycle,we introduce a notion of attraction to model the effect of new pieces of evidence on our opinion. The formalization described in this paper constitutes the basis of ongoing work to investigate the properties of the model

    DCDIDP: A distributed, collaborative, and data-driven intrusion detection and prevention framework for cloud computing environments

    Get PDF
    With the growing popularity of cloud computing, the exploitation of possible vulnerabilities grows at the same pace; the distributed nature of the cloud makes it an attractive target for potential intruders. Despite security issues delaying its adoption, cloud computing has already become an unstoppable force; thus, security mechanisms to ensure its secure adoption are an immediate need. Here, we focus on intrusion detection and prevention systems (IDPSs) to defend against the intruders. In this paper, we propose a Distributed, Collaborative, and Data-driven Intrusion Detection and Prevention system (DCDIDP). Its goal is to make use of the resources in the cloud and provide a holistic IDPS for all cloud service providers which collaborate with other peers in a distributed manner at different architectural levels to respond to attacks. We present the DCDIDP framework, whose infrastructure level is composed of three logical layers: network, host, and global as well as platform and software levels. Then, we review its components and discuss some existing approaches to be used for the modules in our proposed framework. Furthermore, we discuss developing a comprehensive trust management framework to support the establishment and evolution of trust among different cloud service providers. © 2011 ICST

    Cloud Computing: Challenges And Risk Management Framework

    Get PDF
    Cloud-computing technology has developed rapidly. It can be found in a wide range of social, business and computing applications. Cloud computing would change the Internet into a new computing and collaborative platform. It is a business model that achieves purchase ondemand and pay-per-use in network. Many competitors, organizations and companies in the industry have jumped into cloud computing and implemented it. Cloud computing provides us with things such as convenience, reduced cost and high scalability. But despite all of these advantages, there are many enterprises, individual users and organizations that still have not deployed this innovative technology. Several reasons lead to this problem; however, the main concerns are related to security, privacy and trust. Low trust between users and cloud computing providers has been found in the literature

    Architecture and Implementation of a Trust Model for Pervasive Applications

    Get PDF
    Collaborative effort to share resources is a significant feature of pervasive computing environments. To achieve secure service discovery and sharing, and to distinguish between malevolent and benevolent entities, trust models must be defined. It is critical to estimate a device\u27s initial trust value because of the transient nature of pervasive smart space; however, most of the prior research work on trust models for pervasive applications used the notion of constant initial trust assignment. In this paper, we design and implement a trust model called DIRT. We categorize services in different security levels and depending on the service requester\u27s context information, we calculate the initial trust value. Our trust value is assigned for each device and for each service. Our overall trust estimation for a service depends on the recommendations of the neighbouring devices, inference from other service-trust values for that device, and direct trust experience. We provide an extensive survey of related work, and we demonstrate the distinguishing features of our proposed model with respect to the existing models. We implement a healthcare-monitoring application and a location-based service prototype over DIRT. We also provide a performance analysis of the model with respect to some of its important characteristics tested in various scenarios

    Socially Trusted Collaborative Edge Computing in Ultra Dense Networks

    Full text link
    Small cell base stations (SBSs) endowed with cloud-like computing capabilities are considered as a key enabler of edge computing (EC), which provides ultra-low latency and location-awareness for a variety of emerging mobile applications and the Internet of Things. However, due to the limited computation resources of an individual SBS, providing computation services of high quality to its users faces significant challenges when it is overloaded with an excessive amount of computation workload. In this paper, we propose collaborative edge computing among SBSs by forming SBS coalitions to share computation resources with each other, thereby accommodating more computation workload in the edge system and reducing reliance on the remote cloud. A novel SBS coalition formation algorithm is developed based on the coalitional game theory to cope with various new challenges in small-cell-based edge systems, including the co-provisioning of radio access and computing services, cooperation incentives, and potential security risks. To address these challenges, the proposed method (1) allows collaboration at both the user-SBS association stage and the SBS peer offloading stage by exploiting the ultra dense deployment of SBSs, (2) develops a payment-based incentive mechanism that implements proportionally fair utility division to form stable SBS coalitions, and (3) builds a social trust network for managing security risks among SBSs due to collaboration. Systematic simulations in practical scenarios are carried out to evaluate the efficacy and performance of the proposed method, which shows that tremendous edge computing performance improvement can be achieved.Comment: arXiv admin note: text overlap with arXiv:1010.4501 by other author

    Calculating and Presenting Trust in Collaborative Content

    Get PDF
    Collaborative functionality is increasingly prevalent in Internet applications. Such functionality permits individuals to add -- and sometimes modify -- web content, often with minimal barriers to entry. Ideally, large bodies of knowledge can be amassed and shared in this manner. However, such software also provides a medium for biased individuals, spammers, and nefarious persons to operate. By computing trust/reputation for participating agents and/or the content they generate, one can identify quality contributions. In this work, we survey the state-of-the-art for calculating trust in collaborative content. In particular, we examine four proposals from literature based on: (1) content persistence, (2) natural-language processing, (3) metadata properties, and (4) incoming link quantity. Though each technique can be applied broadly, Wikipedia provides a focal point for discussion. Finally, having critiqued how trust values are calculated, we analyze how the presentation of these values can benefit end-users and application security

    Policy-Based Immunization Framework for MANET

    Get PDF
    Mobility is one of the most important driving forces of hyper-interconnected world that we are living in. Mobile computing devices are becoming smaller, more ubiquitous and simultaneously providing more computing power. Various mobile devices in diff rent sizes with high computing power cause the emergence of new type of networks\u27 applications. Researchers in conferences, soldiers in battlefields, medics in rescue missions, and drivers in busy high- ways can perform more efficiently if they can be connected to each other and aware of the environment they are interacting with. In all mentioned scenarios, the major barrier to have an interconnected collaborative environment is the lack of infrastructure. Mobile Ad hoc Networks (MANETs) are very promising to be able to handle this challenge. In recent years, extensive research has been done on MANETs in order to deliver secure and reliable network services in an infrastructure-less environment. MANETs usually deal with dynamic network topologies and utilize wireless technologies, they are very susceptible to different security attacks targeting different network layers. Combining policy-based management concepts and trust evaluation techniques in more granular level than current trust management frameworks can lead to interesting results toward more secure and reliable MANETs

    TRIDEnT: Building Decentralized Incentives for Collaborative Security

    Full text link
    Sophisticated mass attacks, especially when exploiting zero-day vulnerabilities, have the potential to cause destructive damage to organizations and critical infrastructure. To timely detect and contain such attacks, collaboration among the defenders is critical. By correlating real-time detection information (alerts) from multiple sources (collaborative intrusion detection), defenders can detect attacks and take the appropriate defensive measures in time. However, although the technical tools to facilitate collaboration exist, real-world adoption of such collaborative security mechanisms is still underwhelming. This is largely due to a lack of trust and participation incentives for companies and organizations. This paper proposes TRIDEnT, a novel collaborative platform that aims to enable and incentivize parties to exchange network alert data, thus increasing their overall detection capabilities. TRIDEnT allows parties that may be in a competitive relationship, to selectively advertise, sell and acquire security alerts in the form of (near) real-time peer-to-peer streams. To validate the basic principles behind TRIDEnT, we present an intuitive game-theoretic model of alert sharing, that is of independent interest, and show that collaboration is bound to take place infinitely often. Furthermore, to demonstrate the feasibility of our approach, we instantiate our design in a decentralized manner using Ethereum smart contracts and provide a fully functional prototype.Comment: 28 page
    corecore