222,930 research outputs found

    From Personal Experience to Global Reputation for Trust Evaluation in the Social Internet of Things

    Get PDF
    Trust has been exploring in the era of Internet of Things (IoT) as an extension of the traditional triad of security, privacy and reliability for offering secure, reliable and seamless communications and services. It plays a crucial role in supporting IoT entities to reduce possible risks before making decisions. However, despite a large amount of trust-related research in IoT, a prevailing trust evaluation model has been still debatable and under development. In this article, we clarify the concept of trust in the Social Internet of Things (SIoT) ecosystems and propose a comprehensive trust model called REK that incorporates third-party opinions, experience and direct observation as the three Trust Indicators. As the convergence of the IoT and social network, the SIoT enables any types of entities (physical devices, smart agents and services) to establish their own social networks based on their owners relationships. We leverage this characteristic for inaugurating Experience and Reputation, which are originally two concepts from social networks, as the two paramount indicators for trust. The Experience and Reputation are characterized and modeled using mathematical analysis along with simulation experiments and analytical results. We believe our contributions offer better understandings of trust models and evaluation mechanisms in the SIoT environment, particularly the two Experience and Reputation models. This paper also opens important trust-related research directions in near future

    User-Centric Security and Privacy Mechanisms in Untrusted Networking and Computing Environments

    Get PDF
    Our modern society is increasingly relying on the collection, processing, and sharing of digital information. There are two fundamental trends: (1) Enabled by the rapid developments in sensor, wireless, and networking technologies, communication and networking are becoming more and more pervasive and ad hoc. (2) Driven by the explosive growth of hardware and software capabilities, computation power is becoming a public utility and information is often stored in centralized servers which facilitate ubiquitous access and sharing. Many emerging platforms and systems hinge on both dimensions, such as E-healthcare and Smart Grid. However, the majority information handled by these critical systems is usually sensitive and of high value, while various security breaches could compromise the social welfare of these systems. Thus there is an urgent need to develop security and privacy mechanisms to protect the authenticity, integrity and confidentiality of the collected data, and to control the disclosure of private information. In achieving that, two unique challenges arise: (1) There lacks centralized trusted parties in pervasive networking; (2) The remote data servers tend not to be trusted by system users in handling their data. They make existing security solutions developed for traditional networked information systems unsuitable. To this end, in this dissertation we propose a series of user-centric security and privacy mechanisms that resolve these challenging issues in untrusted network and computing environments, spanning wireless body area networks (WBAN), mobile social networks (MSN), and cloud computing. The main contributions of this dissertation are fourfold. First, we propose a secure ad hoc trust initialization protocol for WBAN, without relying on any pre-established security context among nodes, while defending against a powerful wireless attacker that may or may not compromise sensor nodes. The protocol is highly usable for a human user. Second, we present novel schemes for sharing sensitive information among distributed mobile hosts in MSN which preserves user privacy, where the users neither need to fully trust each other nor rely on any central trusted party. Third, to realize owner-controlled sharing of sensitive data stored on untrusted servers, we put forward a data access control framework using Multi-Authority Attribute-Based Encryption (ABE), that supports scalable fine-grained access and on-demand user revocation, and is free of key-escrow. Finally, we propose mechanisms for authorized keyword search over encrypted data on untrusted servers, with efficient multi-dimensional range, subset and equality query capabilities, and with enhanced search privacy. The common characteristic of our contributions is they minimize the extent of trust that users must place in the corresponding network or computing environments, in a way that is user-centric, i.e., favoring individual owners/users

    Systematizing Decentralization and Privacy: Lessons from 15 Years of Research and Deployments

    Get PDF
    Decentralized systems are a subset of distributed systems where multiple authorities control different components and no authority is fully trusted by all. This implies that any component in a decentralized system is potentially adversarial. We revise fifteen years of research on decentralization and privacy, and provide an overview of key systems, as well as key insights for designers of future systems. We show that decentralized designs can enhance privacy, integrity, and availability but also require careful trade-offs in terms of system complexity, properties provided, and degree of decentralization. These trade-offs need to be understood and navigated by designers. We argue that a combination of insights from cryptography, distributed systems, and mechanism design, aligned with the development of adequate incentives, are necessary to build scalable and successful privacy-preserving decentralized systems

    Towards Enhanced Usability of IT Security Mechanisms - How to Design Usable IT Security Mechanisms Using the Example of Email Encryption

    Full text link
    Nowadays, advanced security mechanisms exist to protect data, systems, and networks. Most of these mechanisms are effective, and security experts can handle them to achieve a sufficient level of security for any given system. However, most of these systems have not been designed with focus on good usability for the average end user. Today, the average end user often struggles with understanding and using security mecha-nisms. Other security mechanisms are simply annoying for end users. As the overall security of any system is only as strong as the weakest link in this system, bad usability of IT security mechanisms may result in operating errors, resulting in inse-cure systems. Buying decisions of end users may be affected by the usability of security mechanisms. Hence, software provid-ers may decide to better have no security mechanism then one with a bad usability. Usability of IT security mechanisms is one of the most underestimated properties of applications and sys-tems. Even IT security itself is often only an afterthought. Hence, usability of security mechanisms is often the after-thought of an afterthought. This paper presents some guide-lines that should help software developers to improve end user usability of security-related mechanisms, and analyzes com-mon applications based on these guidelines. Based on these guidelines, the usability of email encryption is analyzed and an email encryption solution with increased usability is presented. The approach is based on an automated key and trust man-agement. The compliance of the proposed email encryption solution with the presented guidelines for usable security mechanisms is evaluated
    • …
    corecore