1,670 research outputs found

    CEPS Task Force on Artificial Intelligence and Cybersecurity Technology, Governance and Policy Challenges Task Force Evaluation of the HLEG Trustworthy AI Assessment List (Pilot Version). CEPS Task Force Report 22 January 2020

    Get PDF
    The Centre for European Policy Studies launched a Task Force on Artificial Intelligence (AI) and Cybersecurity in September 2019. The goal of this Task Force is to bring attention to the market, technical, ethical and governance challenges posed by the intersection of AI and cybersecurity, focusing both on AI for cybersecurity but also cybersecurity for AI. The Task Force is multi-stakeholder by design and composed of academics, industry players from various sectors, policymakers and civil society. The Task Force is currently discussing issues such as the state and evolution of the application of AI in cybersecurity and cybersecurity for AI; the debate on the role that AI could play in the dynamics between cyber attackers and defenders; the increasing need for sharing information on threats and how to deal with the vulnerabilities of AI-enabled systems; options for policy experimentation; and possible EU policy measures to ease the adoption of AI in cybersecurity in Europe. As part of such activities, this report aims at assessing the High-Level Expert Group (HLEG) on AI Ethics Guidelines for Trustworthy AI, presented on April 8, 2019. In particular, this report analyses and makes suggestions on the Trustworthy AI Assessment List (Pilot version), a non-exhaustive list aimed at helping the public and the private sector in operationalising Trustworthy AI. The list is composed of 131 items that are supposed to guide AI designers and developers throughout the process of design, development, and deployment of AI, although not intended as guidance to ensure compliance with the applicable laws. The list is in its piloting phase and is currently undergoing a revision that will be finalised in early 2020. This report would like to contribute to this revision by addressing in particular the interplay between AI and cybersecurity. This evaluation has been made according to specific criteria: whether and how the items of the Assessment List refer to existing legislation (e.g. GDPR, EU Charter of Fundamental Rights); whether they refer to moral principles (but not laws); whether they consider that AI attacks are fundamentally different from traditional cyberattacks; whether they are compatible with different risk levels; whether they are flexible enough in terms of clear/easy measurement, implementation by AI developers and SMEs; and overall, whether they are likely to create obstacles for the industry. The HLEG is a diverse group, with more than 50 members representing different stakeholders, such as think tanks, academia, EU Agencies, civil society, and industry, who were given the difficult task of producing a simple checklist for a complex issue. The public engagement exercise looks successful overall in that more than 450 stakeholders have signed in and are contributing to the process. The next sections of this report present the items listed by the HLEG followed by the analysis and suggestions raised by the Task Force (see list of the members of the Task Force in Annex 1)

    Explaining Explanations in AI

    Get PDF
    Recent work on interpretability in machine learning and AI has focused on the building of simplified models that approximate the true criteria used to make decisions. These models are a useful pedagogical device for teaching trained professionals how to predict what decisions will be made by the complex system, and most importantly how the system might break. However, when considering any such model it’s important to remember Box’s maxim that "All models are wrong but some are useful." We focus on the distinction between these models and explanations in philosophy and sociology. These models can be understood as a "do it yourself kit" for explanations, allowing a practitioner to directly answer "what if questions" or generate contrastive explanations without external assistance. Although a valuable ability, giving these models as explanations appears more difficult than necessary, and other forms of explanation may not have the same trade-offs. We contrast the different schools of thought on what makes an explanation, and suggest that machine learning might benefit from viewing the problem more broadly

    Reasoning and learning services for coalition situational understanding

    Get PDF
    Situational understanding requires an ability to assess the current situation and anticipate future situations, requiring both pattern recognition and inference. A coalition involves multiple agencies sharing information and analytics. This paper considers how to harness distributed information sources, including multimodal sensors, together with machine learning and reasoning services, to perform situational understanding in a coalition context. To exemplify the approach we focus on a technology integration experiment in which multimodal data — including video and still imagery, geospatial and weather data — is processed and fused in a service-oriented architecture by heterogeneous pattern recognition and inference components. We show how the architecture: (i) provides awareness of the current situation and prediction of future states, (ii) is robust to individual service failure, (iii) supports the generation of ‘why’ explanations for human analysts (including from components based on ‘black box’ deep neural networks which pose particular challenges to explanation generation), and (iv) allows for the imposition of information sharing constraints in a coalition context where there is varying levels of trust between partner agencies

    Foundation Metrics: Quantifying Effectiveness of Healthcare Conversations powered by Generative AI

    Full text link
    Generative Artificial Intelligence is set to revolutionize healthcare delivery by transforming traditional patient care into a more personalized, efficient, and proactive process. Chatbots, serving as interactive conversational models, will probably drive this patient-centered transformation in healthcare. Through the provision of various services, including diagnosis, personalized lifestyle recommendations, and mental health support, the objective is to substantially augment patient health outcomes, all the while mitigating the workload burden on healthcare providers. The life-critical nature of healthcare applications necessitates establishing a unified and comprehensive set of evaluation metrics for conversational models. Existing evaluation metrics proposed for various generic large language models (LLMs) demonstrate a lack of comprehension regarding medical and health concepts and their significance in promoting patients' well-being. Moreover, these metrics neglect pivotal user-centered aspects, including trust-building, ethics, personalization, empathy, user comprehension, and emotional support. The purpose of this paper is to explore state-of-the-art LLM-based evaluation metrics that are specifically applicable to the assessment of interactive conversational models in healthcare. Subsequently, we present an comprehensive set of evaluation metrics designed to thoroughly assess the performance of healthcare chatbots from an end-user perspective. These metrics encompass an evaluation of language processing abilities, impact on real-world clinical tasks, and effectiveness in user-interactive conversations. Finally, we engage in a discussion concerning the challenges associated with defining and implementing these metrics, with particular emphasis on confounding factors such as the target audience, evaluation methods, and prompt techniques involved in the evaluation process.Comment: 13 pages, 4 figures, 2 tables, journal pape

    Algorithm Auditing: Managing the Legal, Ethical, and Technological Risks of Artificial Intelligence, Machine Learning, and Associated Algorithms

    Get PDF
    Algorithms are becoming ubiquitous. However, companies are increasingly alarmed about their algorithms causing major financial or reputational damage. A new industry is envisaged: auditing and assurance of algorithms with the remit to validate artificial intelligence, machine learning, and associated algorithms

    Trustworthy Federated Learning: A Survey

    Full text link
    Federated Learning (FL) has emerged as a significant advancement in the field of Artificial Intelligence (AI), enabling collaborative model training across distributed devices while maintaining data privacy. As the importance of FL increases, addressing trustworthiness issues in its various aspects becomes crucial. In this survey, we provide an extensive overview of the current state of Trustworthy FL, exploring existing solutions and well-defined pillars relevant to Trustworthy . Despite the growth in literature on trustworthy centralized Machine Learning (ML)/Deep Learning (DL), further efforts are necessary to identify trustworthiness pillars and evaluation metrics specific to FL models, as well as to develop solutions for computing trustworthiness levels. We propose a taxonomy that encompasses three main pillars: Interpretability, Fairness, and Security & Privacy. Each pillar represents a dimension of trust, further broken down into different notions. Our survey covers trustworthiness challenges at every level in FL settings. We present a comprehensive architecture of Trustworthy FL, addressing the fundamental principles underlying the concept, and offer an in-depth analysis of trust assessment mechanisms. In conclusion, we identify key research challenges related to every aspect of Trustworthy FL and suggest future research directions. This comprehensive survey serves as a valuable resource for researchers and practitioners working on the development and implementation of Trustworthy FL systems, contributing to a more secure and reliable AI landscape.Comment: 45 Pages, 8 Figures, 9 Table
    • …
    corecore