782 research outputs found

    Truncation of Markov chains with applications to queueing

    Get PDF

    Error bounds for last-column-block-augmented truncations of block-structured Markov chains

    Full text link
    This paper discusses the error estimation of the last-column-block-augmented northwest-corner truncation (LC-block-augmented truncation, for short) of block-structured Markov chains (BSMCs) in continuous time. We first derive upper bounds for the absolute difference between the time-averaged functionals of a BSMC and its LC-block-augmented truncation, under the assumption that the BSMC satisfies the general ff-modulated drift condition. We then establish computable bounds for a special case where the BSMC is exponentially ergodic. To derive such computable bounds for the general case, we propose a method that reduces BSMCs to be exponentially ergodic. We also apply the obtained bounds to level-dependent quasi-birth-and-death processes (LD-QBDs), and discuss the properties of the bounds through the numerical results on an M/M/ss retrial queue, which is a representative example of LD-QBDs. Finally, we present computable perturbation bounds for the stationary distribution vectors of BSMCs.Comment: This version has fixed the bugs for the positions of Figures 1 through

    Approximate performability and dependability analysis using generalized stochastic Petri Nets

    Get PDF
    Since current day fault-tolerant and distributed computer and communication systems tend to be large and complex, their corresponding performability models will suffer from the same characteristics. Therefore, calculating performability measures from these models is a difficult and time-consuming task.\ud \ud To alleviate the largeness and complexity problem to some extent we use generalized stochastic Petri nets to describe to models and to automatically generate the underlying Markov reward models. Still however, many models cannot be solved with the current numerical techniques, although they are conveniently and often compactly described.\ud \ud In this paper we discuss two heuristic state space truncation techniques that allow us to obtain very good approximations for the steady-state performability while only assessing a few percent of the states of the untruncated model. For a class of reversible models we derive explicit lower and upper bounds on the exact steady-state performability. For a much wider class of models a truncation theorem exists that allows one to obtain bounds for the error made in the truncation. We discuss this theorem in the context of approximate performability models and comment on its applicability. For all the proposed truncation techniques we present examples showing their usefulness

    Matrix geometric approach for random walks: stability condition and equilibrium distribution

    Get PDF
    In this paper, we analyse a sub-class of two-dimensional homogeneous nearest neighbour (simple) random walk restricted on the lattice using the matrix geometric approach. In particular, we first present an alternative approach for the calculation of the stability condition, extending the result of Neuts drift conditions [30] and connecting it with the result of Fayolle et al. which is based on Lyapunov functions [13]. Furthermore, we consider the sub-class of random walks with equilibrium distributions given as series of product-forms and, for this class of random walks, we calculate the eigenvalues and the corresponding eigenvectors of the infinite matrix R\mathbf{R} appearing in the matrix geometric approach. This result is obtained by connecting and extending three existing approaches available for such an analysis: the matrix geometric approach, the compensation approach and the boundary value problem method. In this paper, we also present the spectral properties of the infinite matrix R\mathbf{R}
    • …
    corecore