54 research outputs found

    Codes, arrangements, matroids, and their polynomial links

    Get PDF
    Codes, arrangements, matroids, and their polynomial links Many mathematical objects are closely related to each other. While studying certain aspects of a mathematical object, one tries to find a way to "view" the object in a way that is most suitable for a specific problem. Or, in other words, one tries to find the best way to model the problem. Many related fields of mathematics have evolved from one another this way. In practice, it is very useful to be able to transform a problem into other terminology: it gives a lot more available knowledge and that can be helpful to solve a problem. This thesis deals with various closely related fields in discrete mathematics, starting from linear error-correcting codes and their weight enumerator. We can generalize the weight enumerator in two ways, to the extended and generalized weight enumerators. The set of generalized weight enumerators is equivalent to the extended weight enumerator. Summarizing and extending known theory, we define the two-variable zeta polynomial of a code and its generalized zeta polynomial. These polynomials are equivalent to the extended and generalized weight enumerator of a code. We can determine the extended and generalized weight enumerator using projective systems. This calculation is explicitly done for codes coming from finite projective and affine spaces: these are the simplex code and the first order Reed-Muller code. As a result we do not only get the weight enumerator of these codes, but it also gives us information on their geometric structure. This is useful information in determining the dimension of geometric designs. To every linear code we can associate a matroid that is representable over a finite field. A famous and well-studied polynomial associated to matroids is the Tutte polynomial, or rank generating function. It is equivalent to the extended weight enumerator. This leads to a short proof of the MacWilliams relations for the extended weight enumerator. For every matroid, its flats form a geometric lattice. On the other hand, every geometric lattice induces a simple matroid. The Tutte polynomial of a matroid determines the coboundary polynomial of the associated geometric lattice. In the case of simple matroids, this becomes a two-way equivalence. Another polynomial associated to a geometric lattice (or, more general, to a poset) is the Möbius polynomial. It is not determined by the coboundary polynomial, neither the other way around. However, we can give conditions under which the Möbius polynomial of a simple matroid together with the Möbius polynomial of its dual matroid defines the coboundary polynomial. The proof of these relations involves the two-variable zeta polynomial, that can be generalized from codes to matroids. Both matroids and geometric lattices can be truncated to get an object of lower rank. The truncated matroid of a representable matroid is again representable. Truncation formulas exist for the coboundary and Möbius polynomial of a geometric lattice and the spectrum polynomial of a matroid, generalizing the known truncation formula of the Tutte polynomial of a matroid. Several examples and counterexamples are given for all the theory. To conclude, we give an overview of all polynomial relations

    Many 2-level polytopes from matroids

    Get PDF
    The family of 2-level matroids, that is, matroids whose base polytope is 2-level, has been recently studied and characterized by means of combinatorial properties. 2-level matroids generalize series-parallel graphs, which have been already successfully analyzed from the enumerative perspective. We bring to light some structural properties of 2-level matroids and exploit them for enumerative purposes. Moreover, the counting results are used to show that the number of combinatorially non-equivalent (n-1)-dimensional 2-level polytopes is bounded from below by cn5/2ρnc \cdot n^{-5/2} \cdot \rho^{-n}, where c0.03791727c\approx 0.03791727 and ρ14.88052854\rho^{-1} \approx 4.88052854.Comment: revised version, 19 pages, 7 figure

    The Tutte polynomial of a morphism of matroids I. Set-pointed matroids and matroid perspectives

    Full text link

    Some combinatorial invariants determined by Betti numbers of Stanley-Reisner ideals

    Get PDF
    The papers in this thesis are not available in Munin: Paper 1: Trygve Johnsen, Jan Roksvold, Hugues Verdure (2014): 'Betti numbers associated to the facet ideal of a matroid', available in Bulletin of the Brazilian Mathematical Society 45 no. 4, 727-744 Paper 2: Trygve Johnsen, Jan Roksvold, Hugues Verdure (2014): 'A generalization of weight polynomials to matroids', manuscript Paper 3: Jan Roksvold, Hugues Verdure (2015): 'Betti numbers of skeletons', manuscriptThe thesis contains new results on the connection between the algebraic properties of certain ideals of a polynomial ring and properties of error-correcting linear codes, matroids and simplicial complexes. We demonstrate that the graded Betti numbers of the facet ideal of a matroid are determined by the Betti numbers of the blocks of the matroid. The extended weight enumerator of coding theory is generalized to matroids. We show that this generalization is equivalent to the Tutte-polynomial, and that the coefficients of this polynomial is determined by Betti numbers of the Stanley-Reisner ideal of the matroid and its elongations. The Betti numbers of the Stanley-Reisner ring of a skeleton of a simplicial complex is demonstrated to be an integral linear combination of the Betti numbers associated to the original complex
    corecore