60 research outputs found

    Truncating and Oversampling OFDM Signals in White Gaussian Noise Channels

    Get PDF
    This work introduces a modified version of the orthogonal frequency division multiplexing (OFDM) signal by truncating OFDM symbols in the time domain. Sub-carriers are no longer orthogonally packed in the frequency domain as time samples are only partially transmitted, leading to improved spectral efficiency. In this work, mathematical expressions are derived for the newly proposed Truncated OFDM (TOFDM) signal, followed by interference analysis and performance comparisons. We also consider optimal and practical decoder architectures. Results from a Sphere Decoder-based decoder indicate that truncation length can significantly affect the error performance. With short truncation length, using a purpose designed detector, signals can be recovered even with truncated symbol transmission

    Non-Orthogonal Signal and System Design for Wireless Communications

    Get PDF
    The thesis presents research in non-orthogonal multi-carrier signals, in which: (i) a new signal format termed truncated orthogonal frequency division multiplexing (TOFDM) is proposed to improve data rates in wireless communication systems, such as those used in mobile/cellular systems and wireless local area networks (LANs), and (ii) a new design and experimental implementation of a real-time spectrally efficient frequency division multiplexing (SEFDM) system are reported. This research proposes a modified version of the orthogonal frequency division multiplexing (OFDM) format, obtained by truncating OFDM symbols in the time-domain. In TOFDM, subcarriers are no longer orthogonally packed in the frequency-domain as time samples are only partially transmitted, leading to improved spectral efficiency. In this work, (i) analytical expressions are derived for the newly proposed TOFDM signal, followed by (ii) interference analysis, (iii) systems design for uncoded and coded schemes, (iv) experimental implementation and (v) performance evaluation of the new proposed signal and system, with comparisons to conventional OFDM systems. Results indicate that signals can be recovered with truncated symbol transmission. Based on the TOFDM principle, a new receiving technique, termed partial symbol recovery (PSR), is designed and implemented in software de ned radio (SDR), that allows efficient operation of two users for overlapping data, in wireless communication systems operating with collisions. The PSR technique is based on recovery of collision-free partial OFDM symbols, followed by the reconstruction of complete symbols to recover progressively the frames of two users suffering collisions. The system is evaluated in a testbed of 12-nodes using SDR platforms. The thesis also proposes channel estimation and equalization technique for non-orthogonal signals in 5G scenarios, using an orthogonal demodulator and zero padding. Finally, the implementation of complete SEFDM systems in real-time is investigated and described in detail

    Synchronization Algorithms for FBMC Systems

    Get PDF
    Filter bank multicarrier (FBMC) systems, such as FMT and OFDM/OQAM systems, can provide reduced sensitivity to narrowband interference, high flexibility to allocate group of subchannels to different users and a high spectral containment. On the other hand, as all the multicarrier modulation schemes, one of their major drawbacks is their sensitivity to CFO and symbol timing errors. In this thesis the problem of CFO and symbol timing synchronization is examined and new data-aided and blind estimation techniques are proposed. Specifically, it is presented a new joint symbol timing and CFO synchronization algorithm based on the LS approach. Moreover, the joint ML phase offset, CFO and symbol timing estimator for a multiple access OFDM/OQAM system is considered. It is also proposed a closed-form CFO estimator based on the best linear unbiased estimation principle for FMT systems. Blind CFO estimators based on the ML principle for low SNR are also considered and, moreover, a closed-form CFO synchronization algorithm based on the LS method is derived. Finally, it is also proposed, under the assumption of low SNR, the joint ML symbol timing and phase offset estimator

    Using zero padding for robust channel Estimation in SEFDM systems

    Get PDF

    Non-Orthogonal Narrowband Internet of Things: A Design for Saving Bandwidth and Doubling the Number of Connected Devices

    Get PDF
    IEEE Narrowband IoT (NB-IoT) is a low power wide area network (LPWAN) technique introduced in 3GPP release 13. The narrowband transmission scheme enables high capacity, wide coverage and low power consumption communications. With the increasing demand for services over the air, wireless spectrum is becoming scarce and new techniques are required to boost the number of connected devices within a limited spectral resource to meet the service requirements. This work provides a compressed signal waveform solution, termed fast-orthogonal frequency division multiplexing (Fast-OFDM), to double potentially the number of connected devices by compressing occupied bandwidth of each device without compromising data rate and bit error rate (BER) performance. Simulation is firstly evaluated for the Fast-OFDM with comparisons to single-carrier-frequency division multiple access (SC-FDMA). Results indicate the same performance for both systems in additive white Gaussian noise (AWGN) channel. Experimental measurements are also presented to show the bandwidth saving benefits of Fast-OFDM. It is shown that in a line-of-sight (LOS) scenario, Fast-OFDM has similar performance as SC-FDMA but with 50% bandwidth saving. This research paves the way for extended coverage, enhanced capacity and improved data rate of NB-IoT in 5th generation (5G) new radio (NR) networks

    Analytical Characterization and Optimum Detection of Nonlinear Multicarrier Schemes

    Get PDF
    It is widely recognized that multicarrier systems such as orthogonal frequency division multiplexing (OFDM) are suitable for severely time-dispersive channels. However, it is also recognized that multicarrier signals have high envelope fluctuations which make them especially sensitive to nonlinear distortion effects. In fact, it is almost unavoidable to have nonlinear distortion effects in the transmission chain. For this reason, it is essential to have a theoretical, accurate characterization of nonlinearly distorted signals not only to evaluate the corresponding impact of these distortion effects on the system’s performance, but also to develop mechanisms to combat them. One of the goals of this thesis is to address these challenges and involves a theoretical characterization of nonlinearly distorted multicarrier signals in a simple, accurate way. The other goal of this thesis is to study the optimum detection of nonlinearly distorted, multicarrier signals. Conventionally, nonlinear distortion is seen as a noise term that degrades the system’s performance, leading even to irreducible error floors. Even receivers that try to estimate and cancel it have a poor performance, comparatively to the performance associated to a linear transmission, even with perfect cancellation of nonlinear distortion effects. It is shown that the nonlinear distortion should not be considered as a noise term, but instead as something that contains useful information for detection purposes. The adequate receiver to take advantage of this information is the optimum receiver, since it makes a block-by-block detection, allowing us to exploit the nonlinear distortion which is spread along the signal’s band. Although the optimum receiver for nonlinear multicarrier schemes is too complex, due to its necessity to compare the received signal with all possible transmitted sequences, it is important to study its potential performance gains. In this thesis, it is shown that the optimum receiver outperforms the conventional detection, presenting gains not only relatively to conventional receivers that deal with nonlinear multicarrier signals, but also relatively to conventional receivers that deal with linear, multicarrier signals. We also present sub-optimum receivers which are able to approach the performance gains associated to the optimum detection and that can even outperform the conventional linear, multicarrier schemes

    Experimental Evaluation of Channel Estimation and Equalisation in Non-Orthogonal FDM Systems

    Get PDF
    This paper describes the design and implementation of an experimental system created to evaluate the performance of channel estimation and equalisation for spectrally efficient frequency division multiplexing (SEFDM) systems in which higher spectral efficiency compared to conventional orthogonal frequency division multiplexing (OFDM) is achieved by violating the orthogonality of its subcarriers. This work proposes a new frequency-domain channel estimation and equalisation method, then investigates the employment of both OFDM and SEFDM pilot symbols for channel estimation to find channel state information (CSI). It is experimentally shown that the new method offers a reduction in the computational complexity compared to conventional time-domain estimation and equalisation for SEFDM systems with a similar system performance. The design of the baseband signal generation and signal detection using IFFT and FFT structure implemented using LabVIEW communication design suite is described in detail together with the baseband design of the system used to effect signal synchronisation and channel estimation and equalisation

    Energy-Efficient Distributed Estimation by Utilizing a Nonlinear Amplifier

    Get PDF
    abstract: Distributed estimation uses many inexpensive sensors to compose an accurate estimate of a given parameter. It is frequently implemented using wireless sensor networks. There have been several studies on optimizing power allocation in wireless sensor networks used for distributed estimation, the vast majority of which assume linear radio-frequency amplifiers. Linear amplifiers are inherently inefficient, so in this dissertation nonlinear amplifiers are examined to gain efficiency while operating distributed sensor networks. This research presents a method to boost efficiency by operating the amplifiers in the nonlinear region of operation. Operating amplifiers nonlinearly presents new challenges. First, nonlinear amplifier characteristics change across manufacturing process variation, temperature, operating voltage, and aging. Secondly, the equations conventionally used for estimators and performance expectations in linear amplify-and-forward systems fail. To compensate for the first challenge, predistortion is utilized not to linearize amplifiers but rather to force them to fit a common nonlinear limiting amplifier model close to the inherent amplifier performance. This minimizes the power impact and the training requirements for predistortion. Second, new estimators are required that account for transmitter nonlinearity. This research derives analytically and confirms via simulation new estimators and performance expectation equations for use in nonlinear distributed estimation. An additional complication when operating nonlinear amplifiers in a wireless environment is the influence of varied and potentially unknown channel gains. The impact of these varied gains and both measurement and channel noise sources on estimation performance are analyzed in this paper. Techniques for minimizing the estimate variance are developed. It is shown that optimizing transmitter power allocation to minimize estimate variance for the most-compressed parameter measurement is equivalent to the problem for linear sensors. Finally, a method for operating distributed estimation in a multipath environment is presented that is capable of developing robust estimates for a wide range of Rician K-factors. This dissertation demonstrates that implementing distributed estimation using nonlinear sensors can boost system efficiency and is compatible with existing techniques from the literature for boosting efficiency at the system level via sensor power allocation. Nonlinear transmitters work best when channel gains are known and channel noise and receiver noise levels are low.Dissertation/ThesisPh.D. Electrical Engineering 201

    Digital signal processing for fiber-optic communication systems

    Get PDF
    As the available bandwidth of optical fibers has been almost fully exploited, Digital Signal Processing (DSP) comes to rescue and is a critical technology underpinning the next generation advanced fiber-optic systems. Literally, it contributes two principal enforcements with respect to information communication. One is the implementation of spectrally-efficient modulation schemes, and the other is the guarantee of the recovery of information from the spectrally-efficient optical signals after channel transmission. The dissertation is dedicated to DSP techniques for the advanced fiber-optic systems. It consists of two main research topics. The first topic is about Fast-orthogonal frequency-division multiplexing (OFDM) — a variant OFDM scheme whose subcarrier spacing is half of that of conventional OFDM. The second one is about Fresnel transform with the derivation of an interesting discrete Fresnel transform (DFnT), and the proposal of orthogonal chirp-division multiplexing (OCDM), which is fundamentally underlain by the Fresnel transform. In the first part, equalization and signal recovery problems result from the halved subcarrier spacing in both double-sideband (DSB) and single-sideband (SSB) modulated Fast-OFDM systems are studied, respectively. By exploiting the relation between the multiplexing kernels of Fast-OFDM systems and Fourier transform, equalization algorithms are proposed for respective Fast-OFDM systems for information recovery. Detailed analysis is also provided. With the proposed algorithms, the DSB Fast-OFDM was experimentally implemented by intensity-modulation and direct detection in the conventional 1.55-μm and the emerging 2-μm fiber-optic systems, and the SSB Fast-OFDM was first implemented in coherent fiber-optic system with a spectral efficiency of 6 bit/s/Hz at 36 Gbps, for the first time. In the second part, Fresnel transform from optical Fresnel diffraction is studied. The discrete Fresnel transform (DFnT) is derived, as an interesting transformation that would be potentially useful for DSP. Its properties are proved. One of the attractive properties, the convolution-preservation property states that the DFnT of a circular convolution of two sequences is equal to the DFnT of either one convolving with the other. One application of DFnT is practically utilized in the proposal of OCDM. In the OCDM system, a large number of orthogonal chirped waveforms are multiplexed for high-speed communication, achieving the maximum spectral efficiency of chirp spread spectrum systems, in the same way as OFDM attains the maximum spectral efficiency of frequency-division multiplexing. Owing to the unique time-frequency properties of chirped waveforms, OCDM outperforms OFDM and single-carrier systems, and is more resilient against the noise effect, especially, when time-domain and frequency-domain distortions are severe. Experiments were carried out to validate the feasibility and advantages of the proposed OCDM systems
    • …
    corecore