3,244 research outputs found

    Truncated Differential Based Known-Key Attacks on Round-Reduced Simon

    Get PDF
    At Crypto 2015, Blondeau, Peyrin and Wang proposed a truncated-differential-based known-key attack on full PRESENT, a nibble oriented lightweight blockcipher with a SPN structure. The truncated difference they used is derived from the existing multidimensional linear characteristics. An innovative technique of their work is the design of a MITM layer added before the characteristic that covers extra rounds with a complexity lower than that of a generic construction. We notice that there are good linear hulls for bit-oriented block cipher Simon corresponding to highly qualified truncated differential characteristics. Based on these characteristics, we propose known-key distinguishers on round-reduced Simon block cipher family, which is bit oriented and has a Feistel structure. Similar to the MITM layer, we design a specific start-from-the-middle method for pre-adding extra rounds with complexities lower than generic bounds. With these techniques, we launch basic known-key attacks on round-reduced Simon. We also involve some key guessing technique and further extend the basic attacks to more rounds. Our known-key attacks can reach as many as 29/32/38/48/63-rounds of Simon32/48/64/96/128, which comes quite close to the full number of rounds. To the best of our knowledge, these are the first known-key results on the block cipher Simon

    Secure Block Ciphers - Cryptanalysis and Design

    Get PDF

    Mind the Gap - A Closer Look at the Security of Block Ciphers against Differential Cryptanalysis

    Get PDF
    Resistance against differential cryptanalysis is an important design criteria for any modern block cipher and most designs rely on finding some upper bound on probability of single differential characteristics. However, already at EUROCRYPT'91, Lai et al. comprehended that differential cryptanalysis rather uses differentials instead of single characteristics. In this paper, we consider exactly the gap between these two approaches and investigate this gap in the context of recent lightweight cryptographic primitives. This shows that for many recent designs like Midori, Skinny or Sparx one has to be careful as bounds from counting the number of active S-boxes only give an inaccurate evaluation of the best differential distinguishers. For several designs we found new differential distinguishers and show how this gap evolves. We found an 8-round differential distinguisher for Skinny-64 with a probability of 2−56.932−56.93, while the best single characteristic only suggests a probability of 2−722−72. Our approach is integrated into publicly available tools and can easily be used when developing new cryptographic primitives. Moreover, as differential cryptanalysis is critically dependent on the distribution over the keys for the probability of differentials, we provide experiments for some of these new differentials found, in order to confirm that our estimates for the probability are correct. While for Skinny-64 the distribution over the keys follows a Poisson distribution, as one would expect, we noticed that Speck-64 follows a bimodal distribution, and the distribution of Midori-64 suggests a large class of weak keys

    Cryptanalysis of SKINNY in the Framework of the SKINNY 2018--2019 Cryptanalysis Competition

    Get PDF
    In April 2018, Beierle et al. launched the 3rd SKINNY cryptanalysis competition, a contest that aimed at motivating the analysis of their recent tweakable block cipher SKINNY . In contrary to the previous editions, the focus was made on practical attacks: contestants were asked to recover a 128-bit secret key from a given set of 2^20 plaintext blocks. The suggested SKINNY instances are 4- to 20-round reduced variants of SKINNY-64-128 and SKINNY-128-128. In this paper, we explain how to solve the challenges for 10-round SKINNY-128-128 and for 12-round SKINNY-64-128 in time equivalent to roughly 2^52 simple operations. Both techniques benefit from the highly biased sets of messages that are provided and that actually correspond to the encryption of various books in ECB mode

    Advanced Differential Cryptanalysis of Reduced-Round SIMON64/128 Using Large-Round Statistical Distinguishers

    Get PDF
    Lightweight cryptography is a rapidly evolving area of research and it has great impact especially on the new computing environment called the Internet of Things (IoT) or the Smart Object networks (Holler et al., 2014), where lots of constrained devices are connected on the Internet and exchange information on a daily basis. Every year there are many new submissions of cryptographic primitives which are optimized towards both software and hardware implementation so that they can operate in devices which have limited resources of hardware and are subject to both power and energy consumption constraints. In 2013, two families of ultra-lightweight block ciphers were proposed, SIMON and SPECK, which come in a variety of block and key sizes and were designed to be optimized in hardware and software implementation respectively (Beaulieu et al., 2013). In this paper, we study the security of the 64-bit SIMON with 128-bit key against advanced forms of differential cryptanalysis using truncated differentials (Knudsen, 1995; Courtois et al., 2014a). We follow similar method as the one proposed in SECRYPT 2013 (Courtois and Mourouzis, 2013) in order to heuristically discover sets of differences that propagate with sufficiently good probability and allow us to combine them efficiently in order to construct large-round statistical distinguishers. We present a 22-round distinguisher which we use it in a depth-first key search approach to develop an attack against 24 and 26 rounds with complexity 2^{124.5} and 2^{126} SIMON encryptions respectively. Our methodology provides a framework for extending distinguishers to attacks to a larger number of rounds assuming truncated differential properties of relatively high probability were discovered

    A brief comparison of Simon and Simeck

    Get PDF
    Abstract. Simeck is a new lightweight block cipher design based on combining the Simon and Speck block cipher. While the design allows a smaller and more efficient hardware implementation, its security margins are not well understood. The lack of design rationals of its predecessors further leaves some uncertainty on the security of Simeck. In this work we give a short analysis of the impact of the design changes by comparing the lower bounds for differential and linear characteristics with Simon. We also give a comparison of the effort of finding those bounds, which surprisingly is significant less for Simeck while covering a larger number of rounds. Furthermore, we provide new differentials for Simeck which can cover more rounds compared to previous results on Simon. Based on this we mount key recovery attacks on 19/26/33 rounds of Simeck32/48/64, which also give insights on the reduced key guessing effort due to the different set of rotation constants

    A Cipher-Agnostic Neural Training Pipeline with Automated Finding of Good Input Differences

    Get PDF
    Neural cryptanalysis is the study of cryptographic primitives through machine learning techniques. Following Gohr’s seminal paper at CRYPTO 2019, a focus has been placed on improving the accuracy of such distinguishers against specific primitives, using dedicated training schemes, in order to obtain better key recovery attacks based on machine learning. These distinguishers are highly specialized and not trivially applicable to other primitives. In this paper, we focus on the opposite problem: building a generic pipeline for neural cryptanalysis. Our tool is composed of two parts. The first part is an evolutionary algorithm for the search of good input differences for neural distinguishers. The second part is DBitNet, a neural distinguisher architecture agnostic to the structure of the cipher. We show that this fully automated pipeline is competitive with a highly specialized approach, in particular for SPECK32, and SIMON32. We provide new neural distinguishers for several primitives (XTEA, LEA, HIGHT, SIMON128, SPECK128) and improve over the state-of-the-art for PRESENT, KATAN, TEA and GIMLI

    Cryptanalysis of Selected Block Ciphers

    Get PDF

    Security analysis of NIST-LWC contest finalists

    Get PDF
    Dissertação de mestrado integrado em Informatics EngineeringTraditional cryptographic standards are designed with a desktop and server environment in mind, so, with the relatively recent proliferation of small, resource constrained devices in the Internet of Things, sensor networks, embedded systems, and more, there has been a call for lightweight cryptographic standards with security, performance and resource requirements tailored for the highly-constrained environments these devices find themselves in. In 2015 the National Institute of Standards and Technology began a Standardization Process in order to select one or more Lightweight Cryptographic algorithms. Out of the original 57 submissions ten finalists remain, with ASCON and Romulus being among the most scrutinized out of them. In this dissertation I will introduce some concepts required for easy understanding of the body of work, do an up-to-date revision on the current situation on the standardization process from a security and performance standpoint, a description of ASCON and Romulus, and new best known analysis, and a comparison of the two, with their advantages, drawbacks, and unique traits.Os padrões criptográficos tradicionais foram elaborados com um ambiente de computador e servidor em mente. Com a proliferação de dispositivos de pequenas dimensões tanto na Internet of Things, redes de sensores e sistemas embutidos, apareceu uma necessidade para se definir padrões para algoritmos de criptografia leve, com prioridades de segurança, performance e gasto de recursos equilibrados para os ambientes altamente limitados em que estes dispositivos operam. Em 2015 o National Institute of Standards and Technology lançou um processo de estandardização com o objectivo de escolher um ou mais algoritmos de criptografia leve. Das cinquenta e sete candidaturas originais sobram apenas dez finalistas, sendo ASCON e Romulus dois desses finalistas mais examinados. Nesta dissertação irei introduzir alguns conceitos necessários para uma fácil compreensão do corpo deste trabalho, assim como uma revisão atualizada da situação atual do processo de estandardização de um ponto de vista tanto de segurança como de performance, uma descrição do ASCON e do Romulus assim como as suas melhores análises recentes e uma comparação entre os dois, frisando as suas vantagens, desvantagens e aspectos únicos
    • …
    corecore