73,117 research outputs found

    Sunyaev-Zel'dovich clusters reconstruction in multiband bolometer camera surveys

    Full text link
    We present a new method for the reconstruction of Sunyaev-Zel'dovich (SZ) galaxy clusters in future SZ-survey experiments using multiband bolometer cameras such as Olimpo, APEX, or Planck. Our goal is to optimise SZ-Cluster extraction from our observed noisy maps. We wish to emphasize that none of the algorithms used in the detection chain is tuned on prior knowledge on the SZ -Cluster signal, or other astrophysical sources (Optical Spectrum, Noise Covariance Matrix, or covariance of SZ Cluster wavelet coefficients). First, a blind separation of the different astrophysical components which contribute to the observations is conducted using an Independent Component Analysis (ICA) method. Then, a recent non linear filtering technique in the wavelet domain, based on multiscale entropy and the False Discovery Rate (FDR) method, is used to detect and reconstruct the galaxy clusters. Finally, we use the Source Extractor software to identify the detected clusters. The proposed method was applied on realistic simulations of observations. As for global detection efficiency, this new method is impressive as it provides comparable results to Pierpaoli et al. method being however a blind algorithm. Preprint with full resolution figures is available at the URL: w10-dapnia.saclay.cea.fr/Phocea/Vie_des_labos/Ast/ast_visu.php?id_ast=728Comment: Submitted to A&A. 32 Pages, text onl

    A Neuron as a Signal Processing Device

    Full text link
    A neuron is a basic physiological and computational unit of the brain. While much is known about the physiological properties of a neuron, its computational role is poorly understood. Here we propose to view a neuron as a signal processing device that represents the incoming streaming data matrix as a sparse vector of synaptic weights scaled by an outgoing sparse activity vector. Formally, a neuron minimizes a cost function comprising a cumulative squared representation error and regularization terms. We derive an online algorithm that minimizes such cost function by alternating between the minimization with respect to activity and with respect to synaptic weights. The steps of this algorithm reproduce well-known physiological properties of a neuron, such as weighted summation and leaky integration of synaptic inputs, as well as an Oja-like, but parameter-free, synaptic learning rule. Our theoretical framework makes several predictions, some of which can be verified by the existing data, others require further experiments. Such framework should allow modeling the function of neuronal circuits without necessarily measuring all the microscopic biophysical parameters, as well as facilitate the design of neuromorphic electronics.Comment: 2013 Asilomar Conference on Signals, Systems and Computers, see http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=681029

    Privacy and Accountability in Black-Box Medicine

    Get PDF
    Black-box medicine—the use of big data and sophisticated machine learning techniques for health-care applications—could be the future of personalized medicine. Black-box medicine promises to make it easier to diagnose rare diseases and conditions, identify the most promising treatments, and allocate scarce resources among different patients. But to succeed, it must overcome two separate, but related, problems: patient privacy and algorithmic accountability. Privacy is a problem because researchers need access to huge amounts of patient health information to generate useful medical predictions. And accountability is a problem because black-box algorithms must be verified by outsiders to ensure they are accurate and unbiased, but this means giving outsiders access to this health information. This article examines the tension between the twin goals of privacy and accountability and develops a framework for balancing that tension. It proposes three pillars for an effective system of privacy-preserving accountability: substantive limitations on the collection, use, and disclosure of patient information; independent gatekeepers regulating information sharing between those developing and verifying black-box algorithms; and information-security requirements to prevent unintentional disclosures of patient information. The article examines and draws on a similar debate in the field of clinical trials, where disclosing information from past trials can lead to new treatments but also threatens patient privacy

    Improved Pseudorandom Generators from Pseudorandom Multi-Switching Lemmas

    Get PDF
    We give the best known pseudorandom generators for two touchstone classes in unconditional derandomization: an ε\varepsilon-PRG for the class of size-MM depth-dd AC0\mathsf{AC}^0 circuits with seed length log(M)d+O(1)log(1/ε)\log(M)^{d+O(1)}\cdot \log(1/\varepsilon), and an ε\varepsilon-PRG for the class of SS-sparse F2\mathbb{F}_2 polynomials with seed length 2O(logS)log(1/ε)2^{O(\sqrt{\log S})}\cdot \log(1/\varepsilon). These results bring the state of the art for unconditional derandomization of these classes into sharp alignment with the state of the art for computational hardness for all parameter settings: improving on the seed lengths of either PRG would require breakthrough progress on longstanding and notorious circuit lower bounds. The key enabling ingredient in our approach is a new \emph{pseudorandom multi-switching lemma}. We derandomize recently-developed \emph{multi}-switching lemmas, which are powerful generalizations of H{\aa}stad's switching lemma that deal with \emph{families} of depth-two circuits. Our pseudorandom multi-switching lemma---a randomness-efficient algorithm for sampling restrictions that simultaneously simplify all circuits in a family---achieves the parameters obtained by the (full randomness) multi-switching lemmas of Impagliazzo, Matthews, and Paturi [IMP12] and H{\aa}stad [H{\aa}s14]. This optimality of our derandomization translates into the optimality (given current circuit lower bounds) of our PRGs for AC0\mathsf{AC}^0 and sparse F2\mathbb{F}_2 polynomials
    corecore