96,475 research outputs found

    Quality-aware model-driven service engineering

    Get PDF
    Service engineering and service-oriented architecture as an integration and platform technology is a recent approach to software systems integration. Quality aspects ranging from interoperability to maintainability to performance are of central importance for the integration of heterogeneous, distributed service-based systems. Architecture models can substantially influence quality attributes of the implemented software systems. Besides the benefits of explicit architectures on maintainability and reuse, architectural constraints such as styles, reference architectures and architectural patterns can influence observable software properties such as performance. Empirical performance evaluation is a process of measuring and evaluating the performance of implemented software. We present an approach for addressing the quality of services and service-based systems at the model-level in the context of model-driven service engineering. The focus on architecture-level models is a consequence of the black-box character of services

    Model-driven performance evaluation for service engineering

    Get PDF
    Service engineering and service-oriented architecture as an integration and platform technology is a recent approach to software systems integration. Software quality aspects such as performance are of central importance for the integration of heterogeneous, distributed service-based systems. Empirical performance evaluation is a process of measuring and calculating performance metrics of the implemented software. We present an approach for the empirical, model-based performance evaluation of services and service compositions in the context of model-driven service engineering. Temporal databases theory is utilised for the empirical performance evaluation of model-driven developed service systems

    A consistency framework for dynamic reconfiguration in AO-middleware architectures

    No full text
    Aspect-oriented (AO) middleware is a promising technology for the realisation of dynamic reconfiguration in distributed systems. Similar to other dynamic reconfiguration approaches, AO-middleware based reconfiguration requires that the consistency of the system is maintained across reconfigurations. AO middleware based reconfiguration is an ongoing research topic and several consistency approaches have been proposed. However, most of these approaches tend to be targeted at specific narrow contexts, whereas for heterogeneous distributed systems it is crucial to cover a wide range of operating conditions. In this paper we address this problem by exploring a flexible, framework-based consistency management approach that cover a wide range of operating conditions ensuring distributed dynamic reconfiguration in a consistent manner for AO-middleware architectures

    Aspect-Oriented Programming

    Get PDF
    Aspect-oriented programming is a promising idea that can improve the quality of software by reduce the problem of code tangling and improving the separation of concerns. At ECOOP'97, the first AOP workshop brought together a number of researchers interested in aspect-orientation. At ECOOP'98, during the second AOP workshop the participants reported on progress in some research topics and raised more issues that were further discussed. \ud \ud This year, the ideas and concepts of AOP have been spread and adopted more widely, and, accordingly, the workshop received many submissions covering areas from design and application of aspects to design and implementation of aspect languages

    Combining behavioural types with security analysis

    Get PDF
    Today's software systems are highly distributed and interconnected, and they increasingly rely on communication to achieve their goals; due to their societal importance, security and trustworthiness are crucial aspects for the correctness of these systems. Behavioural types, which extend data types by describing also the structured behaviour of programs, are a widely studied approach to the enforcement of correctness properties in communicating systems. This paper offers a unified overview of proposals based on behavioural types which are aimed at the analysis of security properties

    Implementing a distributed mobile calculus using the IMC framework

    Get PDF
    In the last decade, many calculi for modelling distributed mobile code have been proposed. To assess their merits and encourage use, implementations of the calculi have often been proposed. These implementations usually consist of a limited part dealing with mechanisms that are specific of the proposed calculus and of a significantly larger part handling recurrent mechanisms that are common to many calculi. Nevertheless, also the "classic" parts are often re-implemented from scratch. In this paper we show how to implement a well established representative of the family of mobile calculi, the distributed [pi]-calculus, by using a Java middleware (called IMC - Implementing Mobile Calculi) where recurrent mechanisms of distributed and mobile systems are already implemented. By means of the case study, we illustrate a methodology to accelerate the development of prototype implementations while concentrating only on the features that are specific of the calculus under consideration and relying on the common framework for all the recurrent mechanisms like network connections, code mobility, name handling, etc
    corecore