29,049 research outputs found

    Enhancing quantum entropy in vacuum-based quantum random number generator

    Full text link
    Information-theoretically provable unique true random numbers, which cannot be correlated or controlled by an attacker, can be generated based on quantum measurement of vacuum state and universal-hashing randomness extraction. Quantum entropy in the measurements decides the quality and security of the random number generator. At the same time, it directly determine the extraction ratio of true randomness from the raw data, in other words, it affects quantum random numbers generating rate obviously. In this work, considering the effects of classical noise, the best way to enhance quantum entropy in the vacuum-based quantum random number generator is explored in the optimum dynamical analog-digital converter (ADC) range scenario. The influence of classical noise excursion, which may be intrinsic to a system or deliberately induced by an eavesdropper, on the quantum entropy is derived. We propose enhancing local oscillator intensity rather than electrical gain for noise-independent amplification of quadrature fluctuation of vacuum state. Abundant quantum entropy is extractable from the raw data even when classical noise excursion is large. Experimentally, an extraction ratio of true randomness of 85.3% is achieved by finite enhancement of the local oscillator power when classical noise excursions of the raw data is obvious.Comment: 12 pages,8 figure

    Bird's-eye view on Noise-Based Logic

    Full text link
    Noise-based logic is a practically deterministic logic scheme inspired by the randomness of neural spikes and uses a system of uncorrelated stochastic processes and their superposition to represent the logic state. We briefly discuss various questions such as (i) What does practical determinism mean? (ii) Is noise-based logic a Turing machine? (iii) Is there hope to beat (the dreams of) quantum computation by a classical physical noise-based processor, and what are the minimum hardware requirements for that? Finally, (iv) we address the problem of random number generators and show that the common belief that quantum number generators are superior to classical (thermal) noise-based generators is nothing but a myth.Comment: paper in pres

    Discrete-Time Chaotic-Map Truly Random Number Generators: Design, Implementation, and Variability Analysis of the Zigzag Map

    Full text link
    In this paper, we introduce a novel discrete chaotic map named zigzag map that demonstrates excellent chaotic behaviors and can be utilized in Truly Random Number Generators (TRNGs). We comprehensively investigate the map and explore its critical chaotic characteristics and parameters. We further present two circuit implementations for the zigzag map based on the switched current technique as well as the current-mode affine interpolation of the breakpoints. In practice, implementation variations can deteriorate the quality of the output sequence as a result of variation of the chaotic map parameters. In order to quantify the impact of variations on the map performance, we model the variations using a combination of theoretical analysis and Monte-Carlo simulations on the circuits. We demonstrate that even in the presence of the map variations, a TRNG based on the zigzag map passes all of the NIST 800-22 statistical randomness tests using simple post processing of the output data.Comment: To appear in Analog Integrated Circuits and Signal Processing (ALOG

    Experimental study of quantum random number generator based on two independent lasers

    Get PDF
    Quantum random number generator (QRNG) can produce true randomness by utilizing the inherent probabilistic nature of quantum mechanics. Recently, the spontaneous-emission quantum phase noise of the laser has been widely deployed for QRNG, due to its high rate, low cost and the feasibility of chip-scale integration. Here, we perform a comprehensive experimental study of phase-noise based QRNG with two independent lasers, each of which operates in either continuous-wave (CW) or pulsed mode. We implement QRNGs by operating the two lasers in three configurations, namely CW+CW, CW+pulsed and pulsed+pulsed, and demonstrate their tradeoffs, strengths and weaknesses.Comment: 7pages,6figures.It has been accepted by PR

    Recommendations and illustrations for the evaluation of photonic random number generators

    Full text link
    The never-ending quest to improve the security of digital information combined with recent improvements in hardware technology has caused the field of random number generation to undergo a fundamental shift from relying solely on pseudo-random algorithms to employing optical entropy sources. Despite these significant advances on the hardware side, commonly used statistical measures and evaluation practices remain ill-suited to understand or quantify the optical entropy that underlies physical random number generation. We review the state of the art in the evaluation of optical random number generation and recommend a new paradigm: quantifying entropy generation and understanding the physical limits of the optical sources of randomness. In order to do this, we advocate for the separation of the physical entropy source from deterministic post-processing in the evaluation of random number generators and for the explicit consideration of the impact of the measurement and digitization process on the rate of entropy production. We present the Cohen-Procaccia estimate of the entropy rate h(ϵ,τ)h(\epsilon,\tau) as one way to do this. In order to provide an illustration of our recommendations, we apply the Cohen-Procaccia estimate as well as the entropy estimates from the new NIST draft standards for physical random number generators to evaluate and compare three common optical entropy sources: single photon time-of-arrival detection, chaotic lasers, and amplified spontaneous emission
    • …
    corecore